在类中使用numba提高python运行速度

本文介绍了如何利用numba的jit功能在Python类中提高代码运行速度。由于numba对代码结构有特定要求,不能直接在类内使用,作者提供了两种解决方案:1) 使用@jitclass进行编译,但处理复杂数据类型时可能失效;2) 将函数写在类外部,并在类中调用,这种方法成功实现了约5倍的提速。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

众所周知,numba 的 jit 功能可以显著提高 python 的运行速度。
然而,numba 对于程序有一些特定的要求,比如不能用 list 之类的,而且似乎也不能直接放在类(class)里。

要想在类中加速的话,有两种方法:

  1. 官方文档给出一种方法 Compiling python classes with @jitclass
    比较麻烦,需要给出类中成员,而且类中如果有 list 之类的东西就会失效
  2. 在类的外部编写函数,类中调用类外的函数,也即本文内容
    参考 How do I use numba on a member function of a class?

解决方法

对于以下代码(没有 jit 修饰):

class A():
    def __init__(self):
        self.a = 1
        self.n = 10000000

    def 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值