自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(65)
  • 资源 (1)
  • 收藏
  • 关注

原创 DDPMs扩散模型Pytorch代码实现附详细注释

扩散模型经典论文pytorch实现

2022-09-27 08:11:17 8972 8

原创 2022图像去雨综述研读——单幅图像去雨数据集和深度学习算法的联合评估与展望

数据集的质量依据数据集构建方式分类:基于背景雨层简单加和背景雨层复杂融合GAN数据驱动合成的数据集半自动化采集的真实数据集图像去雨方法依据任务场景单任务——雨滴、雨纹、雨雾和暴雨的去除联合任务——雨滴和雨纹、所有噪声去除依据采取的学习机制和网络设计CNN结构多分支组合GAN的生成结构循环和多阶段结构多尺度结构编解码结构基于注意力基于Transformer数据模型双驱动的构建方式单幅图像去雨后续高层任务的研究。...

2022-08-25 20:52:43 5874 1

原创 扩散模型原理和pytorch代码实现初学资料汇总

扩散模型原理和pytorch代码实现初学资料汇总

2022-08-24 21:42:36 4981

转载 PyTorch(六)——PyTorch可视化

可以想象这样的场景,数据通过网络向前传播,网络某一层我们预先设置了一个钩子,数据传播过后钩子上会留下数据在这一层的样子,读取钩子的信息就是这一层的特征图。与卷积核相对应,输入的原始图像经过每次卷积层得到的数据称为特征图,可视化卷积核是为了看模型提取哪些特征,可视化特征图则是为了看模型提取到的特征是什么样子的。中就研究了CNN各个层的卷积核的不同,他们发现靠近输入的层提取的特征是相对简单的结构,而靠近输出的层提取的特征就和图中的实体形状相近了。通过上面的两步,我们就得到resnet18的模型结构。...

2022-08-01 07:35:04 931 1

转载 PyTorch(五)——PyTorch进阶训练技巧

自定义损失函数以函数方式定义以类方式定义动态调整学习率使用官方scheduler自定义scheduler模型微调-torchvision模型微调的流程使用已有模型结构训练特定层模型微调-timm如何查看预训练模型种类使用和修改预训练模型模型的保存推荐资料半精度训练半精度训练的设置数据增强-imgaugimgaug简介和安装imgaug的使用单张图片处理对批次图片进行处理对不同大小的图片进行处理imgaug在PyTorch的应用总结使用argparse进行调参

2022-07-22 15:31:29 1634

转载 PyTorch(四)——PyTorch模型定义

PyTorch模型定义的方式equentialModuleListModuleDict三种方法比较与适用场景利用模型块快速搭建复杂网络U-Net简介U-Net模型块分析U-Net模型块实现利用模型块组装U-NetPyTorch修改模型修改模型层添加外部输入添加额外输出PyTorch模型保存与读取模型存储格式模型存储内容单卡和多卡模型存储的区别情况分类讨论...

2022-07-21 22:41:08 2574

转载 Pytorch(三)——FashionMNIST时装分类

FashionMNIST数据集中包含已经预先划分好的训练集和测试集,其中训练集共60,000张图像,测试集共10,000张图像。由于任务较为简单,这里我们手搭一个CNN,而不考虑当下各种模型的复杂结构,模型构建完成后,将模型放到GPU上用于训练。训练完成后,可以使用torch.save保存模型参数或者整个模型,也可以在训练过程中保存模型。在构建训练和测试数据集完成后,需要定义DataLoader类,以便在训练和测试时加载数据。读入后,我们可以做一些数据可视化操作,主要是验证我们读入的数据是否正确。...

2022-07-21 10:52:27 264

原创 Pytorch(二)——PyTorch的主要组成模块

基本配置数据读入模型构建模型初始化损失函数训练和评估Pytorch优化器

2022-07-14 23:06:32 814 10

原创 Pytorch(一)——Pytorch基础知识

包含张量基本运算,自动求导,并行计算简介三部分

2022-07-14 15:46:49 1136

原创 机器学习西瓜书——第七章 贝叶斯分类器

贝叶斯决策论是在概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。下面我们以多分类任务为例来解释其基本原理。假设有NNN种可能的类别标记,即Y={c1,c2,…,cN},λij\mathcal{Y}=\left\{c_{1}, c_{2}, \ldots, c_{N}\right\}, \lambda_{i j}Y={c1​,c2​,…,cN​},λij​是将一个真实标记为cjc_jcj​的样本误分类为cic_ic

2022-07-10 17:46:39 2061 16

原创 机器学习西瓜书——第六章 支持向量机

从几何角度,对线性可分数据集,支持向量机就是找距离正负样本都最远的超平面,相比于感知机,其解是唯一的,且不偏不倚,泛化性能更好。给定训练样本集,分类学习最基本的想法就是基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开,支持向量机倾向找到产生分类结果具有鲁棒性,对未见示例的泛化能力最强的划分超平面。假设超平面能将训练样本正确分类,即{wTxi+b⩾+1,yi=+1wTxi+b⩽−1,yi=−1\begin{cases}\boldsymbol{w}^{\mathrm{T}} \bolds

2022-06-29 16:59:30 1414 4

原创 机器学习西瓜书——第五章 神经网络

神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。误差逆传播算法(BackPropagation,简称BP)是迄今为止最成功的神经网络学习算法。通常说“BP网络”时,一般是指用BP算法训练的多层前馈神经网络。一般来说,标准BP算法每次更新只针对单个样例,参数更新得非常频繁,而且对不同样例进行更新的效果可能出现“抵消”现象。因此,为了达到同样的累积误差最小化,它在读取整个训练集D一遍后才对参数进行更新,其参数更新的频率低得多。但在很多任务

2022-06-26 20:40:19 2211 4

原创 机器学习西瓜书——第四章 决策树

决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例能力强的决策树,其基本流程遵循简单且直观的“分而治之”策略。决策树的生成是一个递归过程。在决策树基本算法中,有三种情形会导致递归返回:(1)当前结点包含的样本全属于同一类别,无需划分;(2)当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;(3)当前结点包含的样本集合为空,不能划分。在第(2)中情况下,我们把当前结点标记为叶结点,并将其类别设定为该结点所含样本最多的类别,即在利用当前结点的后验分布;在第(3)种情况下,同样把当前结点标记为叶结

2022-06-22 09:37:13 2544 3

原创 数据分析Python

一些python数据分析方法的整理

2022-06-22 09:03:43 476

原创 机器学习西瓜书——第三章 线性模型

常见线性模型机理与实现(线性回归,logistics回归,线性判别模型,高斯判别模型)

2022-06-19 15:25:32 1377 1

原创 机器学习西瓜书——第二章 模型评估与选择

错误率——分类错误的样本数占样本总数的比例,即错误率E=a/m,如果在m个样本中有a个样本分类错误。精度——1-E=1-a/m,即精度=1-错误率误差(误差期望)——学习器的实际预测输出与样本的真实输出之间的差异。学习器在训练集上的误差称为“训练误差”或“经验误差”,在新样本上的误差称为“泛化误差”。过拟合——学习器已经把训练样本自身的一些特点当作了所有潜在样本都会具有的一般性质,这样就会导致泛化性能下降。欠拟合——对训练样本的一般性质尚未学好。在模型选择完成后,学习算法和参数配置已选定,此时应该用

2022-06-12 19:56:20 658 1

原创 机器学习西瓜书——第一章 绪论

以上是西瓜数据集的训练集色泽有“青绿”、“乌黑”和“浅白”三种根蒂有“蜷缩”、“硬挺”和“稍蜷”三种敲声有“浊响”、“清脆”和“沉闷”三种西瓜书中的假设空间由形如“好瓜(色泽=?)∧(根蒂=?)∧(敲响=?)”的可能取值所形成的假设组成。并且考虑极端情况,即世界上没有“好瓜”这种东西,用∅表示这个假设。此时的假设空间规模为4×4×4+1=65种情况。在此博主进行了细致说明。现实问题中我们常面临很大的假设空间,但学习过程是基于有限样本训练集进行的,因此,可能有多个假设与训练集一致,即存在着一个与...

2022-06-11 20:12:37 1188

原创 144个城市坐标Python程序

python

2022-06-08 23:29:30 1560 1

原创 deblurGAN代码复现

先从github上下代码压缩包,然后解压DeblurGAN 安装调试笔记最后我用的命令是:python test.py --dataroot ./path_to_your_data --model test --dataset_mode single --learn_residual --resize_or_crop RESIZE_OR_CROP在下方命令行输入此命令。注意path_to_your_data文件夹的位置,里面放要去模糊的图片。No module named dominate,就

2022-04-12 20:04:47 6408 31

原创 Deep Image Deblurring A Survey图像处理论文研读

摘要主要是对深度学习算法的综述。首先讨论图像模糊的常见原因介绍基准数据库与评价指标summarize different problem formulations.详细比较卷积神经网络分类方法介绍了不同场景下的deblurring应用讨论未来研究的主要困难introduction非深度学习方法总是把它当做逆滤波问题,空间变或不变。早期算法总假设blur kernel已知,运用图像逆卷积算法,有无正则化;或者假定未知,同时修复二者。非深度学习算法不太行。我们主要

2022-02-24 19:39:06 4176

原创 python面向对象

B站课程【Python】零基础入门——面向对象编程(强烈推荐)学习思考和记录吧。希望对面向对象编程有更深刻的理解,希望自己在这个课程中有更多的自我思考与反思(以斜体表示),不然泛泛看一遍实在是浪费时间也学不到东西,感动自己,白给...

2022-02-12 00:08:19 701

原创 PyQt5学习资源准备与环境配置

选用《Python Qt GUI与数据可视化编程》进行学习,此书源码与彩图先整理一下B站视频教程——PyQt5教程评论区的资源:此课程相应代码相关配置软件安装对应博客1对应博客2对应博客3对应博客4这个教程主要是PyQt5快速开发与实战pyuic配置:program: python解释器arguments: -m PyQt5.uic.pyuic $FileName$ -o $FileNameWithoutExtension$.pyworking dir

2022-02-06 20:38:18 900

原创 数字图像处理(冈萨雷斯)学习 第3章 灰度变换与空间滤波

引言术语 空间域 指图像平面本身空间域处理主要分为灰度变换和空间滤波两类灰度变换在图像的单个像素上操作,主要以对比度和阈值处理为目的空间滤波涉及改善性能的操作,如通过图像中每一个像素的邻域处理来锐化图像我们还将讨论模糊技术的某些细节,以便允许我们在灰度变换和空间滤波算法的公式化表示中并入不太精确的以知识为基础的信息3.1 背景知识3.1.1 灰度变换和空间滤波基础通常空间域技术在计算上更有效,且在执行上需要较少的处理资源g(x,y)=T[f(x,y)] g(x,y)=T[f(x,y)] g

2022-01-23 22:06:22 3911

原创 数字图像处理(冈萨雷斯)学习 第二章 数字图像基础

引言2.1 人类视觉系统的机理,包括眼中图像的形成及对亮度的适应和鉴别能力。2.2 讨论光、电磁波谱的其他分量及它们的成像特点2.3 讨论成像传感器及怎么使用它们产生数字图像2.4 介绍均匀图像取样及灰度量化的概念。还有数字图像表示、图像中取样数和灰度级变化的影响、空间和灰度分辨率的概念,以及图像内插的原理2.5 处理像素间的各种基本关系2.6 介绍本书用到的主要数学工具。该节的第二个目的是帮助您开始积累一些在各种基本图像处理任务中如何运用这些工具的感觉2.1 视觉感知要素仅涉及人类视觉的最

2022-01-21 17:13:48 3690

原创 链表排序python

此文章是跟DataWhale开源组织刷leetcode算法题时所写,主要内容借鉴算法通关手册1.链表排序简介在数组排序中,常见的排序算法有:冒泡,选择,插入,希尔,归并,快速,堆,计数,桶,基数排序等而对于链表排序而言,因为链表不支持随机访问,访问链表后面的节点只能依靠next指针从头部顺序遍历,所以相对于数组排序问题来说,链表排序问题会更加复杂一点。下面来总结一下适合链表排序与不适合链表排序的算法:适合链表的排序算法:冒泡,选择,插入,归并,快速,计数,桶,基数排序不适合链表的排序算法:希尔

2022-01-19 12:50:23 5014 6

原创 Chrome基础

参考链接1.chrome 开发者工具打开开发者工具所有的Chrome控制台打开方法做个总结:F12;CTRL+SHIFT+I;在页面右键点击检查;浏览器——>更多工具——>开发者工具;打开一个空白页面,打开开发者工具,再切换回去要调试的页面;Elements元素面板一般来说,我们切换到元素面板,它的所有HTML节点都是闭合的,我们可以选中任意元素,右键点击Expand recursively将所有节点打开。我们再元素面板里看到的页面源代码其实并非原始代码,而是CSS和HT

2022-01-14 15:43:37 753

原创 链表基础知识对应的三道leetcode题(二)

0328.奇偶链表0234.回文链表0138.复制带日常的链接表0328 奇偶链表给定一个单链表,把所有的奇数节点和偶数节点分别排在一起。请注意,这里的奇数节点和偶数节点指的是节点编号的奇偶性,而不是节点的值的奇偶性。请尝试使用原地算法完成。你的算法的空间复杂度应为 O(1),时间复杂度应为 O(nodes),nodes 为节点总数。示例 1:输入: 1->2->3->4->5->NULL输出: 1->3->5->2->4->

2022-01-13 17:15:14 228

原创 链表基础知识对应的三道leetcode题

0707. 设计链表0206.系列链表0203. 移除链表元素0707 设计链表1.作者:azb-8法1:规规矩矩写链表

2022-01-13 12:00:14 262

原创 链表python基础知识

跟着datawhale刷力扣,以下基本来自于其文档,感谢链表基本类型链表(Linked List):一种线性表数据结构。它使用一组任意的存储单元(可以是连续的,也可以是不连续的),来存储一组具有相同类型的数据。即「链表」 是实现线性表的链式存储结构的基础。单链表每个数据元素占用若干存储单元的组合称为一个「链节点」,还要存放一个指出这个数据元素在逻辑关系上的直接后继元素所在链节点的地址,该地址被称为「后继指针 next」。双向链表(Doubly Linked List):链表的一种,也叫做双链表。它的

2022-01-10 10:41:26 13372 6

原创 迁移学习基于InceptionV3,ResNet

3.数据集训练1.迁移学习迁移学习的概念早在深度学习之前就已提出,是机器学习中一直都得到关注的一个研究领域。在迁移学习中,把已有的学习数据源叫做源域(sourcedomain),要学习的新数据源叫做目标域(target domain),迁移学习就是研究如何把源域的知识迁移到目标域上。近几年随着深度学习技术的发展,深度神经网络模型显示出良好的迁移学习性能。深度迁移学习思想主要通过在源数据集.上训练深度神经网络模型得到能够提取通用特征的参数,然后再在目标域上进行微调。通常的深度学习神经网络往往有海量的参数,

2022-01-01 21:18:12 1451

原创 图像去噪,简单边框裁剪

保存代码。若能帮上他人,荣幸之至2.图像预处理工作1.背景裁剪经过分析发现,从网络途径采集到的文物图片中,有许多图片背景所占区域较大,而文物本身所占的比例过小。考虑到背景信息属于无关信息,为了适当降低背景区域的干扰,提高有用信息在图像数据中的比重,有如下两种思路: 1)进行前背景像素级分割; 2)按照矩形框简单裁剪放大。考虑到实际工作中由于光照环境、仪器等等因素,采集到的文物图片往往背景是多样化的。前背景像素级分割目前有基于深度学习地方法以及传统基于图的方法,考虑到其计算复杂度较高,而且如果分离效果不

2022-01-01 21:11:53 1995

原创 青年大学习查人程序

上传目的就是保存代码,里面有些点可能在写其他程序的时候会用上。另外如果可以帮到其他人,荣幸之至。代码如下:import pandas as pdimport osfrom itertools import groupbyimport numpy as npfrom collections import defaultdictimport copyos.chdir(r'C:\Users\DELL\Desktop\查人')def excel_one_line_to_list(name, l

2022-01-01 20:15:08 790

原创 python数据分析与挖掘实战第十三章总结

本博客旨在帮助学生自己巩固所学,若能帮得上他人也是荣幸之至首先以下是借鉴过的几个github库,非常感谢:https://github.com/apachecn/python_data_analysis_and_mining_actionhttps://github.com/keefecn/python_practice_of_data_analysis_and_mininghttps://github.com/Stormzudi/Python-Data-Mininghttps://github.

2021-02-04 18:18:05 1520

原创 python数据分析与挖掘实战第五章总结

本博客旨在帮助学生自己巩固所学,若能帮得上他人也是荣幸之至首先以下是借鉴过的几个github库,非常感谢:https://github.com/apachecn/python_data_analysis_and_mining_actionhttps://github.com/keefecn/python_practice_of_data_analysis_and_mininghttps://github.com/Stormzudi/Python-Data-Mininghttps://github.

2021-02-04 17:17:18 1647 1

原创 python数据分析与挖掘实战第十一章总结

本博客旨在帮助学生自己巩固所学,若能帮得上他人也是荣幸之至首先以下是借鉴过的几个github库,非常感谢:https://github.com/apachecn/python_data_analysis_and_mining_actionhttps://github.com/keefecn/python_practice_of_data_analysis_and_mininghttps://github.com/Stormzudi/Python-Data-Mininghttps://github.

2021-02-04 16:46:56 576 2

原创 python数据分析与挖掘实战第八章总结

本博客旨在帮助学生自己巩固所学,若能帮得上他人也是荣幸之至首先以下是借鉴过的几个github库,非常感谢:https://github.com/apachecn/python_data_analysis_and_mining_actionhttps://github.com/keefecn/python_practice_of_data_analysis_and_mininghttps://github.com/Stormzudi/Python-Data-Mininghttps://github.

2021-02-04 12:22:03 841 3

原创 python数据分析与挖掘实战第七章总结

本博客旨在帮助学生自己巩固所学,若能帮得上他人也是荣幸之至首先以下是借鉴过的几个github库,非常感谢:https://github.com/apachecn/python_data_analysis_and_mining_actionhttps://github.com/keefecn/python_practice_of_data_analysis_and_mininghttps://github.com/Stormzudi/Python-Data-Mininghttps://github.

2021-02-04 11:28:28 1234

原创 python数据分析与挖掘实战第六章总结

本博客旨在帮助学生自己巩固所学,若能帮得上他人也是荣幸之至首先以下是借鉴过的几个github库,非常感谢:https://github.com/apachecn/python_data_analysis_and_mining_actionhttps://github.com/keefecn/python_practice_of_data_analysis_and_mininghttps://github.com/Stormzudi/Python-Data-Mininghttps://github.

2021-02-03 21:16:45 648 1

原创 python数据分析与挖掘实战第十四章

本博客旨在帮助学生自己巩固所学,若能帮得上他人也是荣幸之至首先以下是借鉴过的几个github库,非常感谢:https://github.com/apachecn/python_data_analysis_and_mining_actionhttps://github.com/keefecn/python_practice_of_data_analysis_and_mininghttps://github.com/Stormzudi/Python-Data-Mininghttps://github.

2021-02-03 18:45:25 360

原创 python数据分析与挖掘实战第四章总结

本博客旨在帮助学生自己巩固所学,若能帮得上他人也是荣幸之至首先以下是借鉴过的几个github库,非常感谢:https://github.com/apachecn/python_data_analysis_and_mining_actionhttps://github.com/keefecn/python_practice_of_data_analysis_and_mininghttps://github.com/Stormzudi/Python-Data-Mininghttps://github.

2021-02-03 11:30:13 541

有中国144个城市的坐标,请编写python程序,从上述文件中读取相应的数据,完成下列任务

1.对任意一个城市city_i,计算它和其他143个城市的距离,新建一个名为Distance的sheet,将结果保存到其中。 2.新建一个sheet,建立标题行,第一列为144个城市的名字,标题为“城市”,第二列与第一列对应城市距离最近的城市名,标题为“最邻近的城市”,第三列为两个城市之间的距离,标题为“距离”。 3.找出这些城市中距离最近的10对城市,距离最远的10对城市,在Shortest_Distance表中写入这些信息。 4.使用Turtle库,按坐标将这144个城市的位置用点表示出。如果需要,请对城市坐标进行适当的变换。将距离最近的10对城市和距离最远的10对城市用不同的颜色标识出来。 5.使用plotly_express库,按坐标将这144个城市的位置用点表示出。如果需要,请对城市坐标进行适当的变换。将距离最近的10对城市和距离最远的10对城市用不同的颜色标识出来。 资源中包含代码文件(ipynb后缀版,py后缀版,html后缀版),以及相应学习资料整理博客地址。

2022-07-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除