NVIDIA Xavier TensorRT TensorRTX 生成engine时报错

用户在尝试将自己训练的YOLOv5s模型转换为TensorRT引擎时遇到错误。模型可以生成.wts权重文件,但在构建 TensorRT .engine 文件时发生错误,错误信息指出在某个卷积层中,权重计数不匹配。具体表现为期望的权重数量与实际提供的数量不符,可能原因是模型配置或权重加载有问题,需要调整模型的类别数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自己训练得到的yolov5s无法部署。能生成.wts文件,但在生成.engine时报错,报错内容:

Loading weights: best.wts
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: kernel weights has count 2304 but 32640 was expected
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: count of 2304 weights in kernel, but kernel dimensions (1,1) with 128 input channels, 255 output channels and 1 groups were specified. Expected Weights count is 128 * 1*1 * 255 / 1 = 32640
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: kernel weights has count 2304 but 32640 was expected
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: count of 2304 weights in kernel, but kernel dimensions (1,1) with 128 input channels, 255 output channels and 1 groups were specified. Expected Weights count is 128 * 1*1 * 255 / 1 = 32640
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: kernel weights has count 2304 but 32640 was expected
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: count of 2304 weights in kernel, but kernel dimensions (1,1) with 128 input channels, 255 output channels and 1 groups were specified. Expected Weights count is 128 * 1*1 * 255 / 1 = 32640
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: kernel weights has count 2304 but 32640 was expected
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: count of 2304 weights in kernel, but kernel dimensions (1,1) with 128 input channels, 255 output channels and 1 groups were specified. Expected Weights count is 128 * 1*1 * 255 / 1 = 32640
Building engine, please wait for a while...
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: kernel weights has count 2304 but 32640 was expected
[04/13/2022-18:13:44] [E] [TRT] (Unnamed Layer* 214) [Convolution]: count of 2304 weights in kernel, but kernel dimensions (1,1) with 128 input channels, 255 output channels and 1 groups were specified. Expected Weights count is 128 * 1*1 * 255 / 1 = 32640
[04/13/2022-18:13:44] [E] [TRT] Could not compute dimensions for (Unnamed Layer* 214) [Convolution]_output, because the network is not valid.
[04/13/2022-18:13:44] [E] [TRT] Network validation failed.
Build engine successfully!
yolov5: /home/xhr/tensorrtx-yolov5-v5.0/yolov5/yolov5.cpp:245: void APIToModel(unsigned int, nvinfer1::IHostMemory**, bool&, float&, float&, std::__cxx11::string&): Assertion `engine != nullptr' failed.

why?

查了一下,需要修改下类别数量

<think>好的,我现在需要帮助用户解决在NVIDIA Jetson AGX Xavier上安装和配置TensorRT的问题。首先,我需要回顾用户提供的引用内容,看看是否有直接相关的信息。用户提到了三个引用,其中引用[1]是关于环境搭建和jtop安装的,引用[2]是系统克隆的方法,引用[3]涉及环境配置中的错误处理。但这些引用中都没有直接提到TensorRT的安装步骤。不过,根据我对Jetson设备的了解,TensorRT通常是预装在JetPack SDK中的,所以可能需要指导用户通过JetPack来安装或者更新。 接下来,我需要确认用户当前的系统状态。用户可能已经刷写了最新的JetPack版本,如果没有,可能需要先升级系统。然后,安装JetPack通常会包括TensorRT,但用户可能需要手动安装或者通过apt-get来安装。此外,用户可能需要验证TensorRT是否已经存在,或者是否需要从NVIDIA官网下载特定版本的TensorRT。 然后,我需要考虑可能的步骤。首先是检查JetPack版本,因为不同版本的JetPack包含不同版本的TensorRT。用户可以通过运行“sudo apt-cache show tensorrt”来查看可用版本。如果没有安装,可能需要使用apt-get安装。同,用户可能需要安装Python接口,比如python3-libnvinfer或者对应的wheel文件。 另外,用户可能会遇到依赖问题,例如缺少CUDA或cuDNN,但这些通常已经包含在JetPack中。用户需要确保系统已经更新,并且所有依赖项都已安装。此外,用户可能需要配置环境变量,或者将TensorRT的库路径添加到LD_LIBRARY_PATH中。 如果用户需要从源码编译TensorRT,可能需要参考NVIDIA的官方文档,但这种情况较少,因为通常推荐使用预编译版本。另外,用户可能需要安装PyCUDA或者其他支持库来使用TensorRT的Python API。 最后,需要验证安装是否成功,可以通过运行示例代码或导入Python模块来检查。如果遇到问题,可能需要查看日志或错误信息,并参考NVIDIA的论坛或社区支持。 综上所述,我应该整理出一个步骤清晰的指南,涵盖检查预装情况、通过apt安装、验证安装以及示例测试等步骤,并提醒用户注意JetPack版本和可能的依赖问题。同生成相关问题来帮助用户深入理解可能出现的问题和优化方法。</think>### 如何在 NVIDIA Jetson AGX Xavier 上安装和配置 TensorRT? #### 步骤 1: 确认 JetPack 版本 TensorRTNVIDIA JetPack SDK 的一部分,通常预装在系统中。首先检查当前 JetPack 版本: ```bash sudo apt-cache show nvidia-jetpack ``` 若未安装最新版本,建议通过 `sudo apt update && sudo apt upgrade` 更新系统[^1]。 #### 步骤 2: 安装 TensorRT 如果 TensorRT 未预装或需更新,使用以下命令安装: ```bash sudo apt-get install tensorrt ``` 对于 Python 支持,安装对应的 Python 包: ```bash sudo apt-get install python3-libnvinfer python3-libnvinfer-dev ``` #### 步骤 3: 验证安装 检查 TensorRT 版本: ```bash dpkg -l | grep TensorRT ``` 或通过 Python 验证: ```python import tensorrt print(tensorrt.__version__) ``` #### 步骤 4: 配置环境变量 确保 CUDA 和 TensorRT 库路径已正确设置。在 `~/.bashrc` 中添加: ```bash export LD_LIBRARY_PATH=/usr/lib/aarch64-linux-gnu:$LD_LIBRARY_PATH export CUDA_HOME=/usr/local/cuda ``` 执行 `source ~/.bashrc` 生效。 #### 步骤 5: 运行示例测试 测试 TensorRT 示例(需安装示例包): ```bash sudo apt-get install tensorrt-samples cd /usr/src/tensorrt/samples make cd bin ./sample_mnist ``` 若输出推理结果,则安装成功[^3]。 --- ###
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值