●一、YOLOv7简介●
还在用yolov3/yolov5做项目嘛,那已经过时了(至少从知识的新鲜程度上讲)。下面教你一文实现最新的yolov7的模型部署(在版本上压制对手)。
!!!!!!重点是这个程序中的预训练模型在github官网上的下载速度很快,不会出现v3系列那种pth文件下载速度慢断流的问题。作者也为大家准备了其中的:yolov7.pt预训练模型。
官方版的YOLOv7相同体量下比YOLOv5精度更高,速度快120%(FPS),比 YOLOX 快180%(FPS),比 Dual-Swin-T 快1200%(FPS),比 ConvNext 快550%(FPS),比 SWIN-L快500%(FPS)。在5FPS到160FPS的范围内,无论是速度或是精度,YOLOv7都超过了目前已知的检测器,并且在GPU V100上进行测试, 精度为56.8% AP的模型可达到30 FPS(batch=1)以上的检测速率,与此同时,这是目前唯一一款在如此高精度下仍能超过30FPS的检测器。
论文链接:https://arxiv.org/abs/2207.02696
代码链接:https://github.com/WongKinYiu/yolov7
●二、预训练模型准备●
-
模型权重下载
可以从官方github仓库提供的链接中下载基于COCO数据集的YOLOv7预训练模型权重。
Model | Test Size | APtest | AP50test | AP75test | batch 1 fps | batch 32 average time |
YOLOv7 | 640 | 51.4% | 69.7% | 55.9% | 161 fps | 2.8 ms |
YOLOv7-x | 640 | 53.1% | 71.2% | 57.8% | 114 fps | 4.3ms |
YOLOv7-W6 | 1280 | 54.9% | 72.6% | 60.1% | 84 fps | 7.6 ms |
YOLOv7-E6 | 1280 | 56.0% | 73.5% | 61.2% | 56 fps | 12.3 ms |
YOLOv7-D6 | 1280 | 56.6% | 74.0% | 61.8% | 44 fps | 15.0 ms |
YOLOv7-E6E | 1280 | 56.8% | 74.4% | 62.1% | 36 fps | 18.7 ms |
-
模型转换
可以从官方github仓库提供的链接中下载基于COCO数据集的YOLOv7预训练模型权重。
# 下载YOLOv7官方仓库:
$ git clone git@github.com:WongKinYiu/yolov7.git
$ cd yolov7/models
$ python export.py --weights yolov7.pt
**如果执行上面的命令发现模型下载速度慢或者断流,直接按照下面的链接下载yolov7.pth,然后根据程序指引手动将预训练模型放置在指定位置。
yolov7下载地址:https://download.csdn.net/download/qq_44949041/86796489**
●三、模型部署●
通过Netron工具打开yolov7.onnx文件后可以看到,官方提供的预训练模型的output部分包含三个特征层的预测结果,因此需要根据每一层的先验框(anchor)对输出数据进行调整后,再进行堆叠。
由于YOLOv7的模型前后处理基本和YOLOv5一致,大部分数据处理模块可以直接复用。话不多说直接上代码:
●六、运行结果●
运行python示例后,会在本地data目录下生成代bounding box以及label的图片,这里我们用到官方仓库中附带的马匹数据进行测试,具体结果如下:
# 运行代码
$ python YOLOV7.py -i horse.jpg -m yolov7.onnx
Github地址:
https://github.com/OpenVINO-dev-contest/YOLOv7_OpenVINO
--END--
</article>