【Pandas】利用Pandas读取表格中的一列并转化为列表的形式进行存储

该脚本使用pandas的read_excel函数读取.xlsx文件中的一列,通过usecols参数指定列索引。然后运用stack方法将Dataframe转换为Series,再转为numpy数组。最后,数据被转换为列表格式以便进一步处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一个常用的pandas处理数据的脚本。

import numpy as np
import pandas as pd
df = pd.read_excel(".xlsx",usecols=[0])#skiprows=2#读取表格的一列
df_arr = np.asarray(df.stack())#Dataframe类型堆叠变成Series类型再转成numpy数组
cls_list = df_arr.tolist()#转list
print(cls_list)

pd.read_excel用来读取表格中的某一列,usecols这个参数就用来设置所需要读取列的索引,skiprows这个参数可以让你从某列的某一行开始读取,读取到信息是Dataframe类型

利用stack()函数将格式改变最后在转化成numpy数组

最后通过tolist转化成列表

### 使用 Pandas 读取 Excel 转置行列 为了完成从 Excel 中读取数据将 DataFrame 的行和列进行互换的任务,可以遵循以下方法。这涉及到了解如何加载外部电子表格以及掌握 `transpose()` 函数的应用技巧。 #### 步骤解析 ##### 1. 加载必需模块 如同先前展示过的一样,先引入 pandas 库来获取其强大的数据分析功能支持。 ```python import pandas as pd ``` ##### 2. 读取 Excel 文件中的数据表单 采用 `read_excel` 方法指定目标路径名从而把存储于本地磁盘上的工作簿里的某个 sheet 转化成内存里可操作的形式即 DataFrame 对象。 ```python df_original = pd.read_excel("path_to_your_file.xlsx", sheet_name="SheetName") ``` 此处 `"path_to_your_file.xlsx"` 需替换为你实际使用的文件地址,而 `"SheetName"` 则代表具体的工作表名称[^1]。 ##### 3. 执行转置操作 一旦拥有了原始形式的数据框架实例之后,就可以调用 `.T` 属性或者是显式的 `transpose()` 方法来进行矩阵变换—即将原来的每一行变成新对象的一个属性或者说列向量反之亦然。 ```python df_transposed = df_original.T # 或者使用 df_transposed = df_original.transpose() ``` 这种简单的语法背后蕴含着复杂的逻辑运算过程,在内部实现了所有必要调整使得最终呈现出来的结果完全符合预期标准[^2]。 ##### 4. (可选) 查看转换前后对比情况 有时候我们可能想要快速浏览一下修改效果怎么样,那么可以通过选取头部若干条目来做初步验证。 ```python print("Original Data Frame:") print(df_original.head()) print("\nTransposed Data Frame:") print(df_transposed.head()) ``` ##### 5. 存储更改后的数据回原格式或其他类型输出 如果满意当前状态的话,则可以把更新过的版本重新导出至相同或是不同的媒介载体当中去长期保存起来备用。 ```python df_transposed.to_excel("transposed_output.xlsx", index=False) ``` 这里的参数设置表明不会额外增加索引作为附加信息写入到生成的目标文档之中[^3]。 --- ### 注意要点 - 在执行任何大规模变动之前建议总是备份好初始副本以防万一发生不可逆错误损害原始资料完整性。 - 根据实际情况灵活运用各种参数选项定制专属解决方案满足个性化需求比如筛选特定范围内的子集再做相应处理等高级玩法值得探索尝试一番哦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值