Jetson nano 2GB学习资源整理

知乎的(NVIDIA英伟达中国)提供的系列教程

(1)开箱介绍
(2)安装系统
(3)网络设置和添加SWAPFile虚拟内存
(4)并行性和运行一些cuda的实例代码
一些cuda的实例代码。
(5)JetsonNano功能视觉库
VisionWorks的一些不使用cuda的传统方法opencv方法实例。

视觉

(6)安装与调用摄像头
(7)通过 OpenCV 调用 CSI/USB 摄像头
(8)执行常见机器视觉应用
(9)调节 CSI 图像质量
(10)颜色空间动态调节技巧
(11)你应该了解的 OpenCV
(12)人脸定位
(13)身份识别

hello AI World

(14)Hello AI World
(15)Hello AI World 环境安装
(16)10 行代码威力
(17)更换模型得到不同效果
(18)Utils 的 videoSource 工具
(19)Utils 的 videoOutput 工具
(20)“Hello AI World” 扩充参数解析功能
(21)“Hello AI World” 图像分类指令
(22)“Hello AI World” 图像分类代码
(23)“Hello AI World 的物件识别应用
(24)“Hello AI World”的物件识别应用
(25)“Hello AI World” 图像分类的模型训练
(26)“Hello AI World” 物件检测的模型训练

DeepStream

(27)DeepStream简介与启用
(28)DeepStream 初体验
(29)DeepStream 目标追踪功能
(30)DeepStream 摄像头“实时性能”
(31)DeepStream 多模型组合检测-1
(32)DeepStream-插件说明
(33DeepStream 车牌识别与私密信息遮盖
(34)DeepStream 安装Python开发环境
(35)Python版test1实战说明
(36)加入USB输入与RTSP输出
(37)多网路模型合成功能
(38)nvdsanalytics视频分析插件
(39)结合IoT信息传输
Jetbot小车
(40)Jetbot系统介绍
(41)软件环境安装
(42)无线WIFI的安装与调试
(43)CSI摄像头安装与测试
(44)Jetson的40针引脚
(45)I2C总线与PiOLED
(46)机电控制设备的安装
(47)组装过程的注意细节
(48)用键盘与摇杆控制行动
(49)智能避撞之现场演示
(50)智能避障之模型训练
(51)图像分类法实现找路功能
(52)图像回归法实现循路功能
(53)简化模型训练流程的TAO工具套件
(54)NGC的内容简介与注册密钥
(55)安装TAO模型训练工具
(56)启动器CLI指令集与配置文件
(57)视觉类脚本的环境配置与映射
(58)视觉类的数据格式
(59)视觉类的数据增强

极客家园

jetson 的入门课程(英伟达的官网的课程)

NVIDIA 深度学习培训中心(DLI)
在这里插入图片描述

一些在线课程需要登录
在这里插入图片描述
配置课程的docker
如果在2GB 版本的Nano上使用 CSI 摄像头,还要将 --memory=500M --memory-swap=4G 添加到您的 docker run 命令中。

echo "sudo docker run --runtime nvidia -it --rm --network host \
    --memory=500M --memory-swap=4G \
    --volume ~/nvdli-data:/nvdli-nano/data \
    --volume /tmp/argus_socket:/tmp/argus_socket \
    --device /dev/video0 \
    nvcr.io/nvidia/dli/dli-nano-ai:v2.0.2-r32.7.1zh" > docker_dli_run.sh
chmod +x docker_dli_run.sh
./docker_dli_run.sh

课程的目录

相机的使用

分类代码

关于Hello AI world(Nvidia)

jetson-inference(Hello Ai world)的仓库的一些学习资源
github仓库的地址
下载一些网络模型的时候会下载失败,这时,可以单独下载模型

https://github.com/dusty-nv/jetson-inference/releases

使用文件传输软件
将下载好的模型放在jetson-inference/data/network

可参考如下文章
跑通jetson-inference

也可以使用国内的仓库:
搜索

jetson inference下载失败

会出现不少国内的源。
在tools的下面,使用sed命令
参考:替换下载源
Docker:
参考:docker配置

### YOLOv3在Jetson Nano 2GB上的部署与优化 要在NVIDIA Jetson Nano 2GB设备上成功部署和优化YOLOv3模型,可以遵循以下方法和技术建议: #### 1. **环境准备** 确保Jetson Nano已安装必要的依赖库以及支持CUDA的驱动版本。由于Jetson Nano硬件资源有限,推荐使用轻量级框架来减少内存占用。例如,可以通过TensorRT实现推理加速。 对于Jetson Nano平台而言,其计算能力相对较低,因此需要特别关注模型大小及其运行时所需的显存空间[^1]。 #### 2. **转换为TensorRT模型** 为了提高性能并降低功耗,在完成YOLOv3训练之后,应将其导出为ONNX格式文件,再利用官方工具包进一步转化为适用于TensorRT引擎的形式。此过程能够显著提升实际应用中的FPS表现同时节省能源消耗[^2]。 以下是将PyTorch版YOLOv3模型转换成ONNX格式的一个简单例子: ```python import torch.onnx from models import * # 假设这是加载自定义YOLOv3架构的地方 dummy_input = torch.randn(1, 3, 416, 416).cuda() model = Darknet('cfg/yolo_v3.cfg').load_weights('weights/yolov3.weights') torch.onnx.export(model,dummy_input,"yolov3.onnx",opset_version=11) ``` 接着按照[NVIDIA TensorRT文档](https://docs.nvidia.com/deeplearning/tensorrt/)指导构建对应的Plan文件用于后续部署阶段[^3]。 #### 3. **测试与验证** 最后一步是在目标嵌入式板卡即JetsonNano上面执行预测操作以确认一切正常运作无误。如果发现任何异常情况,则需回溯检查先前各环节设置是否存在错误之处直至解决问题为止。 通过上述流程可有效达成基于JetsonNano的小型化物体检测解决方案开发目的;值得注意的是整个过程中务必密切监控系统负载状况以免超出可用物理规格限制引发崩溃等问题发生风险增加。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值