Jetson Nano 2G的学习资源汇总
知乎的(NVIDIA英伟达中国)提供的系列教程
(1)开箱介绍
(2)安装系统
(3)网络设置和添加SWAPFile虚拟内存
(4)并行性和运行一些cuda的实例代码
一些cuda的实例代码。
(5)JetsonNano功能视觉库
VisionWorks的一些不使用cuda的传统方法opencv方法实例。
视觉
(6)安装与调用摄像头
(7)通过 OpenCV 调用 CSI/USB 摄像头
(8)执行常见机器视觉应用
(9)调节 CSI 图像质量
(10)颜色空间动态调节技巧
(11)你应该了解的 OpenCV
(12)人脸定位
(13)身份识别
hello AI World
(14)Hello AI World
(15)Hello AI World 环境安装
(16)10 行代码威力
(17)更换模型得到不同效果
(18)Utils 的 videoSource 工具
(19)Utils 的 videoOutput 工具
(20)“Hello AI World” 扩充参数解析功能
(21)“Hello AI World” 图像分类指令
(22)“Hello AI World” 图像分类代码
(23)“Hello AI World 的物件识别应用
(24)“Hello AI World”的物件识别应用
(25)“Hello AI World” 图像分类的模型训练
(26)“Hello AI World” 物件检测的模型训练
DeepStream
(27)DeepStream简介与启用
(28)DeepStream 初体验
(29)DeepStream 目标追踪功能
(30)DeepStream 摄像头“实时性能”
(31)DeepStream 多模型组合检测-1
(32)DeepStream-插件说明
(33DeepStream 车牌识别与私密信息遮盖
(34)DeepStream 安装Python开发环境
(35)Python版test1实战说明
(36)加入USB输入与RTSP输出
(37)多网路模型合成功能
(38)nvdsanalytics视频分析插件
(39)结合IoT信息传输
Jetbot小车
(40)Jetbot系统介绍
(41)软件环境安装
(42)无线WIFI的安装与调试
(43)CSI摄像头安装与测试
(44)Jetson的40针引脚
(45)I2C总线与PiOLED
(46)机电控制设备的安装
(47)组装过程的注意细节
(48)用键盘与摇杆控制行动
(49)智能避撞之现场演示
(50)智能避障之模型训练
(51)图像分类法实现找路功能
(52)图像回归法实现循路功能
(53)简化模型训练流程的TAO工具套件
(54)NGC的内容简介与注册密钥
(55)安装TAO模型训练工具
(56)启动器CLI指令集与配置文件
(57)视觉类脚本的环境配置与映射
(58)视觉类的数据格式
(59)视觉类的数据增强
jetson 的入门课程(英伟达的官网的课程)
一些在线课程需要登录
配置课程的docker
如果在2GB 版本的Nano上使用 CSI 摄像头,还要将 --memory=500M --memory-swap=4G 添加到您的 docker run 命令中。
echo "sudo docker run --runtime nvidia -it --rm --network host \
--memory=500M --memory-swap=4G \
--volume ~/nvdli-data:/nvdli-nano/data \
--volume /tmp/argus_socket:/tmp/argus_socket \
--device /dev/video0 \
nvcr.io/nvidia/dli/dli-nano-ai:v2.0.2-r32.7.1zh" > docker_dli_run.sh
chmod +x docker_dli_run.sh
./docker_dli_run.sh
课程的目录
相机的使用
分类代码
关于Hello AI world(Nvidia)
jetson-inference(Hello Ai world)的仓库的一些学习资源
github仓库的地址
下载一些网络模型的时候会下载失败,这时,可以单独下载模型
https://github.com/dusty-nv/jetson-inference/releases
使用文件传输软件
将下载好的模型放在jetson-inference/data/network
中
可参考如下文章
跑通jetson-inference
也可以使用国内的仓库:
搜索
jetson inference下载失败