YOLOv7改进实战 | 更换轻量化主干网络Backbone(一)之Ghostnet

本文介绍了如何在YOLOv7中使用Ghostnet作为轻量化Backbone,以减少模型计算量和参数量。通过Ghostnet的Ghost瓶颈和Ghost模块,能在保持检测性能的同时,提升模型在移动设备等资源受限环境的适用性。文章详细阐述了Ghostnet的原理,提供了代码实现步骤,包括配置yaml文件和模型验证、训练与对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在这里插入图片描述


前言

轻量化网络设计是一种针对移动设备等资源受限环境的深度学习模型设计方法。下面是一些常见的轻量化网络设计方法:

  1. 网络剪枝:移除神经网络中冗余的连接和参数,以达到模型压缩和加速的目的。
  2. 分组卷积:将卷积操作分解为若干个较小的卷积操作,并将它们分别作用于输入的不同通道,从而减少计算量。
  3. 深度可分离卷积:将标准卷积分解成深度卷积和逐点卷积两个步骤,使得在大部分情况下可以大幅减少计算量。
  4. 跨层连接:通过跨越多个层级的连接方式来增加神经网络的深度和复杂性,同时减少了需要训练的参数数量。
  5. 模块化设计:将神经网络分解为多个可重复使用的模块,以提高模型的可调节性和适应性。

传统的YOLOv5系列中,Backbone采用的是较为复杂的C3网络结构,这使得模型计算量大幅度的增加,检测速度较慢,应用受限,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。为了解决这个问题,本章节通过采用Ghostnet轻量化主干网络作为Backbone的基础结构,从而在保证检测性能的同时,将网络结构精简到最小,大大减小了模型的参数量和计算量。

### 将GhostNet作为YOLOv5主干网络实现轻量化改进 #### 背景介绍 为了提升计算机视觉模型的效率和性能,研究者们不断探索更高效的神经网络架构。GhostNet作为种高效的设计,在保持较高精度的同时显著减少了计算量和参数数量[^1]。 #### GhostNet简介 GhostNet的核心思想在于通过引入ghost模块来构建特征图。具体来说,先生成少量的基础特征映射,再通过对这些基础特征应用线性变换得到更多的衍生特征映射。这种方法可以在几乎不增加额外运算成本的情况下大幅扩展通道数,从而提高表达能力并减少资源消耗。 #### 替换过程详解 要将GhostNet集成到YOLOv5中作为其新的骨干网路,主要涉及以下几个方面的工作: - **修改配置文件**:调整`yolov5.yaml`中的backbone部分定义,使其指向自定义的GhostNet结构。 - **编写或移植GhostNet代码**:如果官方库未提供现成的支持,则需自行编码实现GhostNet各层逻辑,并确保能无缝对接至YOLOv5框架内工作正常。 - **训练与验证**:完成上述改动后,利用预处理好的数据集重新训练整个检测器;期间密切监控各项指标变化情况,必要时微调超参直至获得满意效果为止。 ```python from models.common import Conv, BottleneckCSP import torch.nn as nn class GhostModule(nn.Module): def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True): super(GhostModule, self).__init__() init_channels = int(oup // ratio) new_channels = init_channels*(ratio-1) self.primary_conv = nn.Sequential( # pointwise conv nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), nn.BatchNorm2d(init_channels), nn.ReLU(inplace=True) if relu else nn.Sequential(), ) self.cheap_operation = nn.Sequential( # depthwise separable convolution nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), nn.BatchNorm2d(new_channels), nn.ReLU(inplace=True) if relu else nn.Sequential(), ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1,x2], dim=1) return out[:, :self._modules['cheap_operation'][-2].weight.size()[0]*2, :, :] ``` 此段Python代码展示了如何创建个简单的Ghost Module类,该类继承自PyTorch的nn.Module基类。其中包含了两个子序列——primary_conv用于执行标准卷积操作,而cheap_operation则负责实施深度可分离卷积以生成更多样化的特征表示。最后,在forward方法里实现了这两个分支输出的拼接以及必要的裁剪操作,保证最终输出维度匹配预期设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w94ghz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值