#os为了下面获取图片路径 import os, glob import matplotlib.pyplot as plt import numpy as np from PIL import Image from sklearn.decomposition import PCA import tensorflow from tensorflow import keras #total_num = 5970 # 训练集总计和 #train_num = 5970 # 训练集实际训练数字,20的验证集 dir_data = '/Users/mac/Desktop/Dataset2' # 训练集路径 dir_mask = os.path.join(dir_data, 'mask') # 戴口罩文件夹路径 dir_nomask = os.path.join(dir_data, 'nomask') # 没带口罩文件夹路径 #assert为断言函数。判断文件是否存在 assert os.path.exists(dir_mask), 'Could not find ' + dir_mask assert os.path.exists(dir_nomask), 'Could not find ' + dir_nomask # 定义了文件指针对整个文件夹遍历一遍,将图像读出来 #os.path.abspath(fp) 获取图片的绝对路径 #glob.glob获取一个可以遍历对象(随机遍历) fpath_mask=[os.path.abspath(fp) for fp in glob.glob(os.path.join(dir_mask, '*.png'))] fpath_nomask = [os.path.abspath(fp) for fp in glob.glob(os.path.join(dir_nomask, '*.png'))] # 文件数 num_mask = len(fpath_mask) num_nomask = len(fpath_nomask) # 设置标签。将num_mask变为0,将num_nomask变为1 label_mask = [0] * num_mask label_nomask = [1] * num_nomask print(
随机森林图片分类
最新推荐文章于 2025-06-01 11:30:22 发布