随机森林图片分类

#os为了下面获取图片路径
import os, glob
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from sklearn.decomposition import PCA
import tensorflow
from tensorflow import keras
#total_num = 5970  # 训练集总计和
#train_num = 5970  # 训练集实际训练数字,20的验证集
dir_data = '/Users/mac/Desktop/Dataset2'  # 训练集路径
dir_mask = os.path.join(dir_data, 'mask')  # 戴口罩文件夹路径
dir_nomask = os.path.join(dir_data, 'nomask')  # 没带口罩文件夹路径
#assert为断言函数。判断文件是否存在
assert os.path.exists(dir_mask), 'Could not find ' + dir_mask
assert os.path.exists(dir_nomask), 'Could not find ' + dir_nomask
# 定义了文件指针对整个文件夹遍历一遍,将图像读出来
#os.path.abspath(fp) 获取图片的绝对路径
#glob.glob获取一个可以遍历对象(随机遍历)
fpath_mask=[os.path.abspath(fp) for fp in glob.glob(os.path.join(dir_mask, '*.png'))]
fpath_nomask = [os.path.abspath(fp) for fp in glob.glob(os.path.join(dir_nomask, '*.png'))]
# 文件数
num_mask = len(fpath_mask)
num_nomask = len(fpath_nomask)
# 设置标签。将num_mask变为0,将num_nomask变为1
label_mask = [0] * num_mask
label_nomask = [1] * num_nomask
print(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值