§1 集合论
1.0 映射
Definition \textbf{Definition} Definition 映射
设 X , Y X,Y X,Y 为两个非空集合,若存在一种对应法则 f f f,使得对于所有 x ∈ X x\in X x∈X 都存在唯一的 y ∈ Y y\in Y y∈Y 与之对应,则称 f f f 为 X X X 到 Y Y Y 的一个映射,记为
f : X → Y ∀ x ↦ ∃ ! y = f ( x ) \begin{aligned} f: \ X \ &\to Y \\ \forall x \ &\mapsto \exists!\ y=f(x) \end{aligned} f: X ∀x →Y↦∃! y=f(x)
其中
y = f ( x ) y=f(x) y=f(x) 称 x x x 在映射 f f f 下的像, x x x 称为 y y y 的原像 ;
X X X 为定义域, Y Y Y 称为 陪域;
f ( X ) = I m f = { f ( x ) : x ∈ X } f(X)=\mathrm{Im}f=\{f(x):x\in X\} f(X)=Imf={f(x):x∈X} 称 值域 或 像集 ,且 f ( X ) ⊆ Y f(X)\subseteq Y f(X)⊆Y.
另外
- 若 f ( X ) = Y f(X)=Y f(X)=Y,则映射为满射;
- 若 ∀ x 1 , x 2 ∈ X ( x 1 ≠ x 2 ) : f ( x 1 ) ≠ f ( x 2 ) \forall x_1,x_2\in X(x_1\ne x_2):f(x_1)\ne f(x_2) ∀x1,x2∈X(x1=x2):f(x1)=f(x2),则称映射为单射;
- 若即为单射又为满射,则称 双射 (又称 一 一映射);
- 映射 f : X → Y f:X\to Y f:X→Y 为双射 ⇔ \Leftrightarrow ⇔ 存在逆映射 f − 1 : Y → X f^{-1}:Y\to X f−1:Y→X;
- 若 f : X → Y , g : Y → Z f:X\to Y,g:Y\to Z f:X→Y,g:Y→Z,则复合映射
g ∘ f : X → Z x ↦ z = g ( f ( x ) ) \begin{aligned} g\circ f:X &\to Z \\ x\ &\mapsto\ z=g(f(x))\end{aligned} g∘f:Xx →Z↦ z=g(f(x))
1.1 集合
1.1.0 符号体系
1.1.0.1 常见集合符号
集合 | 符号 | 含义 |
---|---|---|
空集 | ϕ \phi ϕ | 不包含任何元素的集合 |
正整数集 | N ∗ \mathbb{N^*} N∗、 N + \mathbb{N}_+ N+ | { 1 , 2 , ⋯ } \{1,2,\cdots\} {1,2,⋯} |
自然数集 | N \mathbb{N} N、 N 0 \mathbb{N_{\color{red}0}} N0 | { 0 , 1 , 2 , ⋯ } \{{\color{red}0},1,2,\cdots\} {0,1,2,⋯} |
整数集 | Z \mathbb{Z} Z | { ⋯ , − 2 , − 1 , 0 , 1 , 2 , ⋯ } \{\cdots,-2,-1,0,1,2,\cdots\} {⋯,−2,−1,0,1,2,⋯} |
有理数集 | Q \mathbb{Q} Q | a b ( a , b ∈ Z ; b ≠ 0 ) \displaystyle\frac{a}{b}\ (a,b\in\mathbb{Z};b\ne 0) ba (a,b∈Z;b=0) |
实数集 | R \mathbb{R} R | 有理数与无理数的统称 |
复数集 | C \mathbb{C} C | z = a + b i = R e ( z ) + I m ( z ) i ( a , b ∈ R ; i 2 = − 1 ) z=a+bi=\mathrm{Re}(z)+\mathrm{Im}(z)i\ \\(a,b\in\mathbb{R};i^2=-1) z=a+bi=Re(z)+Im(z)i (a,b∈R;i2=−1) |
数域 | F \mathbb{F} F、 K \mathbb{K} K | 任意两个元素和、差、积、商四则运算封闭的复数集. |
指标集(索引集) | Λ \Lambda Λ | { A λ : λ ∈ Λ } = { A λ } λ ∈ Λ \{A_{\lambda}:\lambda\in\Lambda\}=\{A_{\lambda}\}_{\lambda\in\Lambda} {Aλ:λ∈Λ}={Aλ}λ∈Λ |
1.1.0.2 集合包含关系符号
含于 (类比 “ ⩽ \leqslant ⩽” ) | 真含于 (类比 “ < < <”) |
---|---|
⊆ \subseteq ⊆ | ⊂ \subset ⊂ |
⊆ \subseteq ⊆ | ⊊ \subsetneq ⊊ |
⫅ \subseteqq ⫅ | ⫋ \subsetneqq ⫋ |
1.1.0.3 集合、量词、布尔逻辑的关联
集合关系 | 交 | 并 | 补 | 对称差 | |||
---|---|---|---|---|---|---|---|
∩ \cap ∩ | ∪ \cup ∪ | A c A^c Ac | Δ \Delta Δ | ||||
全称量词、存在量词 | 对于所有 | 存在 | |||||
∀ \forall ∀ | ∃ \exists ∃ | ||||||
布尔逻辑 | 与(and) | 或(or) | 非(not) | 异或(xor) | 同或(xnor) | 与非(nand) | 或非(nor) |
∧ \wedge ∧ | ∨ \vee ∨ | ¬ \neg ¬ | ⊕ \oplus ⊕ | ⊙ \odot ⊙、 ¬ ( A ⊕ B ) \neg(A\oplus B) ¬(A⊕B) | ¬ ( A ∧ B ) \neg(A\wedge B) ¬(A∧B) | ¬ ( A ∨ B ) \neg(A\vee B) ¬(A∨B) |
楔积 / 外积 | 对称积 | 内积 | 直和 | 直积 / 笛卡尔积 | 张量积 | 克罗内克积 |
---|---|---|---|---|---|---|
Wedge Product / Exterior Product | Symmetric Product | Inner Product | Direct Sum | Direct Product / Cartesian product | Tensor Product | Kronecker Product |
∧ \wedge ∧ | ∨ \vee ∨ | ⟨ , ⟩ \langle\ ,\ \rangle ⟨ , ⟩ | ⊕ \oplus ⊕ | × \times × | ⊗ \otimes ⊗ | ⊗ \otimes ⊗ |
1.1.1 集合关系与运算律
Definition \textbf{Definition} Definition 集合关系与运算
子集、真子集:
∀ a ∈ A : a ∈ B ⇔ A ⊆ B A ⊆ B ∧ A ≠ B ⇔ A ⊂ B \forall\ a\in A:a\in B \Leftrightarrow A \subseteq B \\ A\subseteq B\wedge A\ne B \Leftrightarrow A\subset B ∀ a∈A:a∈B⇔A⊆BA⊆B∧A=B⇔A⊂B幂集: 所有子集(包括自身与空集)构成的集合.
2 A = { S : S ⊆ A } 2^A=\{S:S\subseteq A\} 2A={S:S⊆A}并集:
A ∪ B = { x : x ∈ A ∨ x ∈ B } ⋃ α ∈ Λ A α = { x : ∃ α ∈ Λ , s . t . x ∈ A α } \begin{align*} A\cup B&=\{x:x\in A\vee x\in B\} \\\bigcup_{\alpha\in\Lambda}A_\alpha&=\{x:\exists \alpha\in\Lambda,\ \mathrm{s.t.}\ x\in A_\alpha\} \end{align*} A∪Bα∈Λ⋃Aα={x:x∈A∨x∈B}={x:∃α∈Λ, s.t. x∈Aα}交集:
A ∩ B = { x : x ∈ A ∧ x ∈ B } ⋂ α ∈ Λ A α = { x : ∀ α ∈ Λ , x ∈ A α } A\cap B=\{x:x\in A \wedge x\in B\} \\\bigcap_{\alpha\in\Lambda}A_{\alpha}=\{x:\forall \alpha\in\Lambda,x\in A_\alpha\} A∩B={x:x∈A∧x∈B}α∈Λ⋂Aα={x:∀α∈Λ,x∈Aα}差集:
A \ B = A − B = A ∩ B c = { x : x ∈ A ∧ x ∉ B } A\backslash B =A-B =A\cap B^c =\{x:x\in A \wedge x\notin B \} A\B=A−B=A∩Bc={x:x∈A∧x∈/B}余集(补集):
A c = R \ A = R − A = { x : x ∈ R ∧ x ∉ A } A^c =\R\backslash A =\R-A =\{x:x\in \R \wedge x\notin A\} Ac=R\A=R−A={x:x∈R∧x∈/A}直积(笛卡尔积):
A × B = { ( x , y ) : x ∈ A ∧ y ∈ B } ∏ i = 1 ∞ A i = { ( x 1 , x 2 , ⋯ ) : x i ∈ A i , i ∈ N + } \begin{align*} A\times B&=\{(x,y):x\in A\wedge y\in B\} \\\prod_{i=1}^{\infty}A_i&=\{(x_1,x_2,\cdots):x_i\in A_i,i\in\mathbb{N^+}\} \end{align*} A×Bi=1∏∞Ai={(x,y):x∈A∧y∈B}={(x1,x2,⋯):xi∈Ai,i∈N+}交换律:
A ∪ B = B ∪ A A ∩ B = B ∩ A A\cup B=B\cup A \\A\cap B=B\cap A A∪B=B∪AA∩B=B∩A结合律:
A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A\cup(B\cup C)=(A\cup B)\cup C \\A\cap(B\cap C)=(A\cap B)\cap C A∪(B∪C)=(A∪B)∪CA∩(B∩C)=(A∩B)∩C分配律:
A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A\cap(B\cup C)=(A\cap B)\cup(A\cap C) A∩(B∪C)=(A∩B)∪(A∩C)德摩根律:
( A ∪ B ) c = A c ∩ B c , ( A ∩ B ) c = A c ∪ B c ( ⋃ λ ∈ Λ A λ ) c = ⋂ λ ∈ Λ A λ c , ( ⋂ λ ∈ Λ A λ ) c = ⋃ λ ∈ Λ A λ c (A\cup B)^c=A^c\cap B^c\ ,\ (A\cap B)^c=A^c\cup B^c \\\left(\bigcup_{\lambda\in\Lambda} A_\lambda\right)^c=\bigcap_{\lambda\in\Lambda}A_\lambda^c\ ,\ \left(\bigcap_{\lambda\in\Lambda} A_\lambda\right)^c=\bigcup_{\lambda\in\Lambda}A_\lambda^c (A∪B)c=Ac∩Bc , (A∩B)c=Ac∪Bc(λ∈Λ⋃Aλ)c=λ∈Λ⋂Aλc , (λ∈Λ⋂Aλ)c=λ∈Λ⋃Aλc对称差:
A Δ B = ( A − B ) ∪ ( B − A ) = ( A ∪ B ) − ( A ∩ B ) = { x : ( x ∈ A ) X O R ( x ∈ B ) } \begin{align*} A\Delta B&=(A-B)\cup(B-A) \\&=(A\cup B)-(A\cap B) \\&=\{x:(x\in A)XOR(x\in B)\} \end{align*} AΔB=(A−B)∪(B−A)=(A∪B)−(A∩B)={x:(x∈A)XOR(x∈B)}
1.1.2 集合语言
⋃ λ ∈ Λ A λ = { x : ∃ λ ∈ Λ , s . t . x ∈ A λ } ⋂ λ ∈ Λ A λ = { x : ∀ λ ∈ Λ : x ∈ A λ } \begin{aligned} {\color{red}\bigcup\limits_{\color{blue}\lambda\in\Lambda}}A_{\lambda} &=\{x:{\color{red}\exists} {\color{blue}\lambda\in\Lambda}\ ,\mathrm{s.t.\ }x\in A_{\lambda}\} \\{\color{red}\bigcap\limits_{\color{blue}\lambda\in\Lambda}}A_{\lambda} &=\{x:{\color{red}\forall} {\color{blue}\lambda\in\Lambda} :x\in A_{\lambda}\} \end{aligned} λ∈Λ⋃Aλλ∈Λ⋂Aλ={x:∃λ∈Λ ,s.t. x∈Aλ}={x:∀λ∈Λ:x∈Aλ}
Example \textbf{Example} Example 函数 f ( x ) f(x) f(x) 连续
∀ ε > 0 , ∃ δ > 0 , s . t . ∀ x ∈ ( x 0 − δ , x 0 + δ ) : ∣ f ( x ) − f ( x 0 ) ∣ < ϵ \forall\varepsilon>0,\exists\delta>0,\mathrm{s.t.}\forall x\in (x_0-\delta,x_0+\delta):|f(x)-f(x_0)|<\epsilon ∀ε>0,∃δ>0,s.t.∀x∈(x0−δ,x0+δ):∣f(x)−f(x0)∣<ϵ
( x 0 − δ , x 0 + δ ) ⊂ { x : ∣ f ( x ) − f ( x 0 ) ∣ < ε } f ( ( x 0 − δ , x 0 + δ ) ) ⊂ ( f ( x 0 ) − ε , f ( x 0 ) + ε ) \\(x_0-\delta,x_0+\delta)\subset\{x:|f(x)-f(x_0)|<\varepsilon\} \\ \\f((x_0-\delta,x_0+\delta))\subset(f(x_0)-\varepsilon,f(x_0)+\varepsilon) (x0−δ,x0+δ)⊂{x:∣f(x)−f(x0)∣<ε}f((x0−δ,x0+δ))⊂(f(x0)−ε,f(x0)+ε)
Example \textbf{Example} Example 集合列的上下极限
数列上、下极限:
l i m ‾ n → ∞ a n = lim sup n → ∞ a n = lim n → ∞ sup k ≥ n { a k } = inf n ≥ 1 sup k ≥ n { a k } l i m ‾ n → ∞ a n = lim inf n → ∞ a n = lim n → ∞ inf k ≥ n { a k } = sup n ≥ 1 inf k ≥ n { a k } \begin{aligned} &\varlimsup_{n\to\infty}a_n =\limsup\limits_{n\to\infty}a_n =\lim\limits_{n\to\infty}\sup\limits_{k\ge n}\{a_k\} =\inf\limits_{n\ge 1}\sup\limits_{k\ge n}\{a_k\} \\ &\varliminf_{n\to\infty}a_n =\liminf\limits_{n\to\infty}a_n =\lim\limits_{n\to\infty}\inf\limits_{k\ge n}\{a_k\} =\sup\limits_{n\ge 1}\inf\limits_{k\ge n}\{a_k\} \end{aligned} n→∞liman=n→∞limsupan=n→∞limk≥nsup{ak}=n≥1infk≥nsup{ak}n→∞liman=n→∞liminfan=n→∞limk≥ninf{ak}=n≥1supk≥ninf{ak}集合列上、下极限:
l i m ‾ n → ∞ A n = lim sup n → ∞ A n = inf n ≥ 1 sup k ≥ n { A k } = ⋂ n ≥ 1 ⋃ k ≥ n A k = { x : ∀ n ∈ N + , ∃ k ⩾ n , s . t . x ∈ A k } l i m ‾ n → ∞ A n = lim inf n → ∞ A n = sup n ≥ 1 inf k ≥ n { A k } = ⋃ n ≥ 1 ⋂ k ≥ n A k = { x : ∃ n ∈ N + , s . t . ∀ k ⩾ n , x ∈ A k } \begin{aligned} \varlimsup_{n\to\infty}A_n &=\limsup\limits_{n\to\infty}A_n =\inf\limits_{n\ge 1}\sup\limits_{k\ge n}\{A_k\} =\bigcap_{n\ge 1}\bigcup_{k\ge n}A_k \\&=\{x:\forall n\in\mathbb{N^+},\exists k\geqslant n,\ \mathrm{s.t.}x\in A_k\} \\\\ \varliminf_{n\to\infty}A_n &=\liminf\limits_{n\to\infty}A_n =\sup\limits_{n\ge 1}\inf\limits_{k\ge n}\{A_k\} =\bigcup_{n\ge 1}\bigcap_{k\ge n}A_k \\&=\{x:\exists n\in\mathbb{N^+},\mathrm{s.t.}\forall k\geqslant n,x\in A_k\} \end{aligned} n→∞limAnn→∞limAn=n→∞limsupAn=n≥1infk≥nsup{Ak}=n≥1⋂k≥n⋃Ak={x:∀n∈N+,∃k⩾n, s.t.x∈Ak}=n→∞liminfAn=n≥1supk≥ninf{Ak}=n≥1⋃k≥n⋂Ak={x:∃n∈N+,s.t.∀k⩾n,x∈Ak}
1.2 集合的基数、对等
1.2.1 基数、对等
Definition \textbf{Definition} Definition 对等(等势)、基数(势)
若存在一个由集合 X X X 至 Y Y Y 的双射,则称 X X X 与 Y Y Y 对等(等势),记作
X ∼ Y X\sim Y X∼Y
规定空集 Φ ∼ Φ \Phi\sim\Phi Φ∼Φ.若集合 A ∼ B A\sim B A∼B,则称集合 A , B A,B A,B 的基数相同, 记作:
C a r d ( A ) = C a r d ( B ) \mathrm{Card}(A)=\mathrm{Card}(B) Card(A)=Card(B)注: 对等关系是一种等价关系,满足:
- 反身性: X ∼ X X\sim X X∼X
- 对称性: X ∼ Y ⇒ Y ∼ X X\sim Y\Rightarrow Y \sim X X∼Y⇒Y∼X
- 传递性: X ∼ Y ∼ Z ⇒ X ∼ Z X\sim Y\sim Z\Rightarrow X\sim Z X∼Y∼Z⇒X∼Z
1.2.2 康托尔-伯恩斯坦-施罗德定理
Theorem \textbf{Theorem} Theorem Cantor-Bernstein-Schroeder \text{Cantor-Bernstein-Schroeder} Cantor-Bernstein-Schroeder 定理
设 A , B ≠ Φ A,B\neq \Phi A,B=Φ, 若 A ∼ B A\sim B A∼B 的一个子集,且 B ∼ A B\sim A B∼A 的一个子集,则 A ∼ B A\sim B A∼B. 即
C a r d ( A ) ⩽ C a r d ( B ) ∧ C a r d ( A ) ⩾ C a r d ( B ) ⇒ C a r d ( A ) = C a r d ( B ) \mathrm{Card}(A)\leqslant\mathrm{Card}(B)\wedge\mathrm{Card}(A)\geqslant\mathrm{Card}(B) \\\Rightarrow\ \mathrm{Card}(A)=\mathrm{Card}(B) Card(A)⩽Card(B)∧Card(A)⩾Card(B)⇒ Card(A)=Card(B)
1.3 有限集、可列集、至多可列集
1.3.1 概念
Definition \textbf{Definition} Definition 有限集、可列集、至多可列集
有限集(有穷集): 有限元素组成的集合;否则为无限集.
可列集(可数集): 无限集中的元素能按照某种规律排成一个序列;或者说 与自然数集 N \mathbb{N} N 等势的无限集合;否则为不可列集.
至多可列集(至多可数集): 有限集与可列集的统称.
Theorem \textbf{Theorem} Theorem 性质
设 A i A_i Ai 为可列集,则 ⋃ i = 1 ∞ A i , ∏ i = 1 n A i \bigcup\limits_{i=1}^{\infty}A_i\ ,\ \prod\limits_{i=1}^{n}A_i i=1⋃∞Ai , i=1∏nAi 仍为可列集.
设 A i A_i Ai 为有限集或可列集,则 ⋃ i = 1 ∞ A i \bigcup\limits_{i=1}^{\infty}A_i i=1⋃∞Ai 仍为有限集或可列集;若至少有一个 A i A_i Ai 为可列集,则 ⋃ i = 1 ∞ A i \bigcup\limits_{i=1}^{\infty}A_i i=1⋃∞Ai 为可列集.
(1) 可列集的任意无限子集仍为可列集,从而任意子集为有限集或可列集;(2) 任意无限集至少包含一个可列子集.
有理数集 Q \mathbb{Q} Q 为可列集,实数集 R \mathbb{R} R 为不可列集.
1.3.2 无穷基数:阿列夫数
可列集在无限集中有最小的基数,即自然数的总数,该基数称为 阿列夫零 ℵ 0 \aleph_0 ℵ0
ℵ 0 : = C a r d ( N ) \aleph_0:=\mathrm{Card}(\mathbb{N}) ℵ0:=Card(N)阿列夫一 ℵ 1 \aleph_1 ℵ1 为点的总数,即实数的总数,
ℵ 1 : = C a r d ( R ) \\\aleph_1:=\mathrm{Card}(\mathbb{R}) ℵ1:=Card(R)
由于自然数集的幂集与实数集对等,故其与 ℵ 0 \aleph_0 ℵ0 有以下关系
ℵ 1 = 2 ℵ 0 \\\aleph_1=2^{\aleph_0} ℵ1=2ℵ0阿列夫二 ℵ 2 \aleph_2 ℵ2 为曲线的总数.
实变函数 第一章 集合论
实变函数 第二章 点集拓扑
实变函数 第三章 测度论
实变函数 第四章 可测函数
实变函数 第五章 勒贝格积分(一)
实变函数 第五章 勒贝格积分(二)
实变函数 第五章 勒贝格积分(三)