模型名称MA-GNN
知识图谱补全(非少样本)
摘要
图神经网络(GNN)有效地利用知识图谱(KG)中的拓扑结构在低维空间中嵌入实体和关系,在知识图谱补全(KGC)中显示出强大的功能。KG具有丰富的全局和局部结构信息,然而,许多基于GNN的KGC模型不能通过设计复杂的聚合方案来捕获这两类关于图结构的信息,并且不能很好地学习孤立子图中具有稀疏邻域的可见实体的表示。在本文中,我们发现一个简单的基于注意力的方法可以优于一般的基于GNN的KGC方法。然后,我们提出了一种基于双分支多注意的图神经网络(MA-GNN)来学习包含丰富的全局局部结构信息的更具表现力的实体表示。具体来说,我们首先探索了基于图注意网络的局部聚合器来学习实体表示。在此基础上,我们提出了一种滚雪球式的局部关注机制,利用两跳邻居之间的语义相似性来丰富实体嵌入。最后,我们利用基于Transformer的自关注学习实体之间的远程依赖关系,以获得具有全局图结构和实体特征的更丰富的表示。在5个基准数据集上的实验结果表明,MA-GNN在归纳KGC的强基线上取得了显著的改进。
一、介绍
1、知识图谱(KGs)是由事实三元组(头实体、关系、尾实体)表示的结构化知识集合,对许多应用至关重要,包括语义搜索、问答、推荐系统等。
2、即使是拥有数十亿个三元组的大规模知识图谱(例如Freebase和DBpedia)也是不完整的,不完整性限制了知识图谱的应用。
3、知识图谱补全(KGC)试图在给定三元组关系和尾(头)的情况下自动预测缺失的头(尾)。
4、知识图谱补全(KGC)可以通过以下方法:
知识图谱嵌入(KGE)方法:KGE旨在定义一个评分函数,并将实体和关系嵌入到低维向量空间中,以基于观察到的三元组来评估三元组的合理性。
图神经网络(GNN)方法:由于KGC的内在图结构,GNN可以通过聚合其相应的本地邻居信息来学习每个实体的隐藏表示。
基于注意力的GNN方法:基于注意力的GNN方法可以有效地聚合多跳邻居信息从而获得更丰富的实体表示。
二、面临问题
1、知识图谱嵌入(KGE)补全知识图谱:严重依赖于预定义的评分函数;很难将关于实体的结构信息编码为单个向量。
2、图神经网络(GNN)补全知识图谱:只能捕获单个实体附近的局部信息,缺乏利用全局信息的能力;一个大的知识图谱由多个独立的子图组成,这些子图不与主子图相连,随着GNN层的增加和孤立子图中有限实体和关系的增加,现有的GNN方法往往会出现过度平滑或过度压缩。
3、基于注意力的GNN补全知识图谱:它们大多数集中于编码高阶拓扑信息(路径或随机行走序列),忽略了来自邻域实体的丰富结构信息;对复杂信息编码中重要的局部信息与全局信息的融合问题重视不够;两跳邻居实体的数量远远高于一跳邻居实体的数量,直接为每个目标实体融合两跳邻域实体不合理。
因此,对目标实体更关注其多跳邻居,并结合全局和局部结构信息来学习有效的知识表示是有意义的。
本文提出了一种双分支多注意图神经网络(MA-GNN),以保持KGC的全局-局部结构信息。MA-GNN是一种编码器-解码器模型,其中三种注意机制(Graph attention network(GAT)、基于Snowball局部注意机制和基于Transformer的自注意模块)和ConvE 分别扮演编码器和解码器的角色。此外,由于这两个分支的特征不同,在提取全局和局部特征时使用了三种注意机制。具体来说,我们首先采用了基于GAT和基于Transformer的自注意模块学习实体表示以获取全局-局部结构信息。其次,提出了Snowball局部注意模块来计算两跳邻域实体之间的局部语义相似度。
综上所述,我们做出了以下贡献:
1、提出了一种双分支多注意图神经网络,该网络由全局和局部两个并行分支组成,与其他基于注意力的GNN方法相比,MA-GNN可以通过GAT和基于Transformer的自注意捕获实体之间的局部信息和长期依赖关系。
2、为了提取更多的判别特征,设计了Snowball局部注意机制,该机制可以学习目标实体的两跳邻域实体之间的实体相似性,并像雪球一样编码更多的信息。
3、在五个基准数据集上将MA-GNN与以前的KGC方法进行了比较。实验表明,MA-GNN具有显著的改进效果,在WN18RR数据集上的得分为0.679,在NELL-995数据集上的得分为0.823,在FB15K数据集上的得分为0.932,分别比现有方法高12.7%,4.3%和15.1%。
三、相关工作
3.1GNN-based模型
迄今为止,现有的大多数基于GNN的方法都被用来处理KGs中的多关系边,这些方法设计了不同的消息传递机制来捕获实体的图结构和属性。
CompGCN描述了在连接目标实体的邻域实体的每条边上的组合算子;
SE-GNN提出了一种新的基于语义证据感知图神经网络的KGE模型来辅助KGE外推;
Rethinking旨在探索GCNs在KGC中的实际效果,并提出了LTE-KGE框架,该框架将线性变换的实体嵌入与现有的KGE模型相结合;
MRGAT为KGs设计了一个基于异构GNN的框架,直接将GNN应用于多关系图;
KBGAT利用GAT在任何实体的邻域中合并实体和关系特征。
3.2 Attention-based模型
近年来,基于注意力机制的方法(Attention-based methods)在知识图谱中越来越受欢迎。
基于Transformer的注意力聚合邻居信息,关注图结构而不是一跳邻居,研究了在不过度平滑的情况下学习远距离关系的问题;
将分层注意力机制解耦分为关系级注意和实体级注意,可以通过实体级注意力编码每个基于关系路径的邻居特征。
四、实验
4.1模型
模型MA-GNN有两大组成部分:一个编码器和一个解码器。
编码器分为三个模块来捕获局部和全局信息:
(1)局部分支(