【笔记】深度学习入门:基于Python的理论与实现(六)

本文介绍了深度学习的基本概念、技术细节(如卷积层、ReLU等)、在MNIST数据集上的应用以及提高识别精度的方法。深度学习通过加深网络、GPU加速、分布式学习等方式实现高性能,涉及领域包括物体检测、图像分割、自动驾驶和强化学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习

深度学习是加深了层的深度神经网络

加深网络

本节我们将这些已经学过的技术汇总起来,创建一个深度网络,挑战 MNIST 数据集的手写数字识别

向更深的网络出发

  • 基于3×3的小型滤波器的卷积层。
  • 激活函数是ReLU。
  • 全连接层的后面使用Dropout层。
  • 基于Adam的最优化。
  • 使用He初始值作为权重初始值。
    在这里插入图片描述

进一步提高识别精度

可以发现进一步提高识别精度的技术和 线索。比如,集成学习、学习率衰减、Data Augmentation(数据扩充)等都有 助于提高识别精度。尤其是Data Augmentation,虽然方法很简单,但在提高 识别精度上效果显著,Data Augmentation基于算法“人为地”扩充输入图像(训练图像)

加深层的动机

这种比赛的结果显示,最近前几名 的方法多是基于深度学习的,并且有逐渐加深网络的层的趋势。也就是说, 可以看到层越深,识别性能也越高。
加深层的好处:

  • 可以减少网络的参数数量。

一次 5 × 5 的卷积运算的区域可以由两次 3 × 3 的卷积运算抵充。并且, 相对于前者的参数数量 25(5 × 5),后者(反向)一共是 18(2 × 3 × 3),通过叠加卷 积层,参数数量减少了。而且,这个参数数量之差会随着层的加深而变大。 比如,重复三次 3 × 3 的卷积运算时,参数的数量总共是 27。而为了用一次 卷积运算“观察”与之相同的区域,需要一个 7 × 7 的滤波器,此时的参数数 量是 49。
在这里插入图片描述

  • 使学习更加高效。

通过加深层,可以分层次地传递信息,这一点也很重要。比如,因为提 取了边缘的层的下一层能够使用边缘的信息,所以应该能够高效地学习更加 高级的模式。也就是说,通过加深层,可以将各层要学习的问题分解成容易 解决的简单问题,从而可以进行高效的学习。

深度学习的小历史

一般认为,现在深度学习之所以受到大量关注,其契机是 2012 年举办 的大规模图像识别大赛ILSVRC(ImageNet Large Scale Visual Recognition Challenge)。在那年的比赛中,基于深度学习的方法(通称 AlexNet)以压倒 性的优势胜出,彻底颠覆了以往的图像识别方法。2012 年深度学习的这场逆袭成为一个转折点,在之后的比赛中,深度学习一直活跃在舞台中央。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值