论文链接:https://arxiv.org/abs/2208.08819 BMVC 2021
abstract
CSL(Contrastive Self-supervised Learning)的一个缺点是,对比损失函数需要大量的负样本,以提供更好的理想互信息边界。
通过变大batch size来增加负样本数理,同时也会增强假负例的影响(某张同类图被错误认为原图的负例),即语义相似的样本(其他同类图片)被远离了原图,从而降低了模型效果。
通过引入一个简单的对比学习模型Siamese Prototypical Contrastive Learning(SPCL)来解决上述问题。关键是使用siamese-style的度量损失(metric loss)来匹配原型内特征,同时增加原型间特征之间的距离。
introduction
CSL核心思想是利用样本的增强图去构建对应的pretext任务。此任务学习深度神经网络提取特征表示的能力,可进一步用于大量下游任务,如图像分类,目标检测,语义分割。
之前说过CSL的缺点即假负例,其有如下解决方法:
1)一种直接的方法就是使用样本的标签信息,即监督对比学习。
2)另一种方法是使用原型(prototype),以task-agnostic(任务无关)的方式解决问题。
- 聚类可以预先定义,也可以在训练小批量期间计算
- 来自同一原型的样本包含非常相似的语义信息
- 学习到的嵌入特征对于下游分类任务提供更好的辨别能力
注:"prototype"指嵌入空间中的样本聚类
实验发现直接添加原型的交叉熵损失会降低性能。此外,通过最小化聚类中心的相似性来分离聚类中心是没有帮助的。实验推测在原始嵌入空间中区分语义假负例是不可行的。为了解决这个问题,提出了一种Siamese-style metric loss,以最大化原型间距离,同时保持原型内相似性。实验揭露在对比投影空间(contrastive projec