
算法
文章平均质量分 97
记录语言的算法知识,免费分享,一起学习
GISer Liu
一名GIS、遥感、云计算和人工智能领域学习者
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO模型魔改指南:从原理到实战,替换Backbone、Neck和Head(战损版)
🏆🎉本文是DataWhale YOLO原理组队学习的终极实战指南,详细讲解如何对YOLO模型进行结构级改造。文章从模型魔改的必要性出发,系统性地介绍了YOLO的三段式架构(Backbone、Neck、Head),并提供了完整的代码实现方案。通过RepViT、GFPN、DyHead等前沿模块的替换实例,展示了如何突破"调参工程师"的局限,真正实现模型创新。教程包含环境配置、源码修改、YAML配置等实战细节,特别适合希望在目标检测领域深入研究的开发者和研究者。原创 2025-07-09 02:46:22 · 1222 阅读 · 0 评论 -
YOLOv8实战(上) - 从零构建你的专属商品检测器
本文介绍了YOLOv8实战项目中异构数据集融合的关键技术。主要内容包括:1) 分析VOC与YOLO两种数据格式的核心差异,重点解析了VOC的XML标注结构和YOLO的归一化坐标特点;2) 提出多源数据集整合方案,通过自动化脚本解决类别ID映射冲突问题;3) 详细说明从VOC到YOLO格式的转换流程,包括坐标归一化处理和数据结构重组。该方案能有效提升模型在复杂场景下的泛化能力,为智能零售等实际应用提供可靠的技术支持。原创 2025-07-06 02:59:21 · 792 阅读 · 2 评论 -
YOLOv8架构解析进阶:从Backbone设计到检测头原理
本文深度剖析YOLOv8的核心架构,结合代码实现逐模块解析其设计思想。从Backbone的C2f特征提取、Neck的PAN-FPN双向融合,到Head的解耦预测与Anchor-Free机制,完整呈现YOLOv8的算法实现流程。通过可视化特征图与简化代码演示,直观展示模型如何处理多尺度目标检测任务,并详解后处理中的DFL解码与NMS逻辑。适合希望深入理解YOLOv8原理的开发者阅读,提供与单纯调用API截然不同的技术视角。原创 2025-07-03 02:05:54 · 532 阅读 · 0 评论 -
YOLO实战篇:数据集的制作
🏆🎉🤔本文是YOLO实战的基石篇,详细讲解目标检测数据集制作全流程。文章深入解析VOC和COCO两大基准数据集的结构与标注格式,包括VOC的XML文件组织、COCO的JSON标注体系。重点演示如何将VOC/COCO格式转换为YOLO所需的TXT格式,提供自动化脚本和手动转换两种方法。通过实际代码示例,教会读者下载、解析、筛选和重组数据集,为YOLO模型训练打下坚实基础。适合YOLO初学者和需要处理自定义数据集的开发者学习参考。原创 2025-07-01 01:08:25 · 749 阅读 · 0 评论 -
YOLOv8实战:从零构建车辆检测系统(保姆级教程+完整代码)
"🚀 本教程手把手教你用YOLOv8实现车辆检测实战!从环境搭建、数据集处理到模型训练与推理,完整覆盖目标检测全流程。基于Kaggle真实交通数据集,详细讲解YOLO格式转换、配置文件编写等核心技巧,特别适合CV初学者快速入门。附完整代码和可视化方案,轻松掌握工业级检测系统开发。"原创 2025-06-29 02:59:27 · 1332 阅读 · 0 评论 -
YOLO深度解读:LOSS模块详解与演进
🏆🎉😎本文深度解析YOLO系列目标检测算法的损失函数演进,从v1的MSE到v12的WIoU+DFL+VFL组合,系统剖析了BCE、CIoU、DFL等核心损失函数的设计原理与代码实现。通过对比各版本损失函数改进(如分类任务从BCE到VFL、定位任务从MSE到动态WIoU),揭示YOLO在平衡速度与精度上的技术哲学,并提供实践中的损失函数选型建议。附完整代码实现与演进对比表,助力开发者深入理解目标检测模型的优化本质。原创 2025-06-27 02:43:23 · 1186 阅读 · 0 评论 -
从Backbone到NMS-Free:通俗易懂的YOLO架构解析(附代码)
🏆🎉😎本文是DataWhale YOLO原理组队学习的精华总结,通过"快递分拣中心"的生动比喻,系统拆解目标检测核心架构: 🔧 **三大组件精讲** - Backbone:揭秘"图像特征榨汁机"如何分层提取边缘→部件→语义信息 - Neck:图解FPN+PAN双向金字塔如何实现多尺度特征融合 - Head:剖析解耦头如何将特征"翻译"为检测结果原创 2025-06-25 02:46:57 · 1153 阅读 · 0 评论 -
YOLO深度解读:IOU变体系列解析
🔍🏆🎉本文深度剖析目标检测核心指标IOU及其变体的技术演进,从基础IoU到SIoU的完整技术脉络,结合数学原理与YOLO实战代码,详解GIoU、DIoU、CIoU、EIoU、SIoU的创新点与适用场景。通过可视化对比和PyTorch代码实现,揭示不同变体在梯度优化、收敛速度、方向感知等方面的优劣,最后给出YOLO系列模型的选型建议和调优技巧。适合目标检测领域开发者收藏细读!原创 2025-06-23 02:27:35 · 1015 阅读 · 0 评论 -
YOLO发展全解:从v1到v12的技术演进细节指南
本文系统梳理了YOLO(You Only Look Once)目标检测算法从2015年v1版本到2025年v12版本的技术演进历程,深入解析了其核心架构创新、性能优化路径及行业应用实践。原创 2025-06-21 02:46:51 · 1122 阅读 · 0 评论 -
YOLO深度解读:从原理到实践的进阶指南
🎉🔍本文深入解析YOLO系列目标检测算法,从一阶段检测原理到网络架构创新,详解Backbone、Neck和Head设计。通过技术演进分析揭示YOLO如何平衡速度与精度,重点解读边界框损失、Focal Loss等核心机制。提供从数据准备、模型训练到量化部署的全流程实践指南,包含轻量化模型选择、超参数调优等实用技巧,帮助开发者高效应用YOLO解决实际问题。原创 2025-06-18 02:56:23 · 1387 阅读 · 0 评论 -
LSTM 与 TimesNet的时序分析对比解析
🙂🎉本文系统对比了基于插补的LSTM和端到端TimesNet两种时序分类方法,通过PyPOTS库的完整实现和实验分析,帮助读者:1. 理解不同缺失值处理策略的优劣2. 掌握TimesNet的1D→2D变换核心原理3. 根据数据特性(缺失率/周期性)选择最佳方案4. 快速复现实验(提供完整代码和调参建议)适用于医疗诊断、工业检测等含缺失值的时序分类场景。原创 2025-05-26 02:12:43 · 721 阅读 · 0 评论 -
PyPOTS与SAITS的自定义医疗时序数据缺失值插补全流程解析
你好,我是GISer Liu🙂,本文以合成的eICU数据集为例,详细演示了自定义时序数据的预处理流程和基于PyPOTS的SAITS模型进行插补的完整过程。主要有:1. **数据预处理**:加载原始数据,对齐时间步长,划分数据集,标准化特征,创建人工缺失2. **模型训练**:配置和训练SAITS模型,实现高质量的缺失值插补3. **结果应用**:将插补后的数据转换回原始格式,用于下游任务通过这个过程,各位读者不仅解决了时序数据中的缺失值问题,还了解了深度学习插补方法的工作原理和应用策略。原创 2025-05-23 01:25:20 · 1059 阅读 · 0 评论 -
BRITS时序分析:端到端学习的优势
本文探讨了端到端学习在时序数据处理中的重要性,并通过BRITS模型展示了直接处理含缺失值时序数据的方法。相比两阶段处理,端到端学习能够更好地利用缺失模式中的信息,减少误差累积,并针对最终任务整体优化。原创 2025-05-20 02:24:19 · 832 阅读 · 0 评论 -
理解LSTM网络:从时序分析开始
本文详细解析了LSTM的工作原理,包括LSTM的结构设计、门控机制,以及在时序数据处理中的实际应用。长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的RNN结构,能有效解决传统循环神经网络中的长期依赖问题。本文将基于Staudemeyer和Morris的教程详细解析LSTM的工作原理,并结合PyTorch实现展示其在处理含缺失值时序数据中的应用。原创 2025-05-18 02:23:33 · 962 阅读 · 0 评论 -
数据缺失不用愁:PyPOTS库与SAITS模型深度解析
💡 本文深入剖析了基于自注意力机制的SAITS模型在时间序列缺失值插补中的应用。通过结合论文解读和PyPOTS实战案例,文章详细介绍了SAITS的双任务学习框架、自注意力机制原理及其实际应用,并提供了完整的代码实现与性能分析,帮助读者掌握这一先进的时序插补技术。原创 2025-05-16 02:57:31 · 823 阅读 · 0 评论 -
PyPOTS: 时间序列的Python工具箱与股票市场的应用
本文全面介绍了时间序列数据分析及其在金融领域的应用,重点讲解了PyPOTS框架的核心功能和使用方法。文章包含以下主要内容:时间序列基础:详细解析了时间序列的定义、特点、分类体系以及主要分析任务(预测、分类、聚类、异常检测、插补)PyPOTS框架:介绍了这一专门处理缺失值时间序列的开源工具箱,包括其核心理念、支持的任务与算法(SAITS、BRITS等)以及生态系统组件(TSDB、PyGrinder等)实战案例:提供了完整的股票数据分析代码,涵盖数据生成、缺失值处理、填补和预测全流程原创 2025-05-14 02:49:06 · 1275 阅读 · 0 评论 -
LeetCode从入门到超凡(五)深入浅出---位运算
本文详细介绍了位运算的基本概念、操作及其应用。首先,解释了位运算的定义及其在提高程序性能方面的优势,并通过二进制数的转换方法帮助理解位运算的基础。接着,深入探讨了六种基本的位运算操作:按位与(AND)、按位或(OR)、按位异或(XOR)、取反(NOT)、左移(SHL)和右移(SHR),并通过具体示例展示了每种操作的运算规则和应用场景。原创 2024-09-30 01:53:48 · 1689 阅读 · 0 评论 -
LeetCode从入门到超凡(四)深入浅出理解贪心算法
贪心算法是一种经典的算法策略,广泛应用于解决最优化问题。在许多情况下,贪心算法能够以简单且高效的方式解决复杂问题。因此,掌握贪心算法对开发人员和算法爱好者来说非常重要。本文旨在帮助读者深入理解贪心算法的工作原理、特征、正确性证明及其实际应用,并通过多个实例的分析和Python代码实现来巩固理解。贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择,从而期望通过局部最优解最终得到全局最优解的算法。原创 2024-09-28 02:34:22 · 937 阅读 · 0 评论 -
LeetCode从入门到超凡(三)回溯算法
回溯算法(Backtracking)是一种基于试错思想的搜索算法,旨在通过系统地探索所有可能的解空间来寻找问题的解。它通过逐步构建候选解,并在发现当前路径无法满足求解条件时,回退到上一步(即回溯),重新选择其他可能的路径,从而避免不必要的搜索。这种“走不通就回退”的策略使得回溯算法在处理复杂问题时具有较高的效率。试探与回退:在搜索过程中,算法会尝试每一种可能的选择,如果发现当前选择无法继续构建有效的解,则回退到上一步,尝试其他选择。递归实现。原创 2024-09-25 02:06:34 · 1445 阅读 · 0 评论 -
LeetCode从入门到超凡(二)递归与分治算法
递归(Recursion):是一种通过重复将原问题分解为同类的子问题来解决问题的方法。在编程中,递归通常通过在函数内部调用函数自身来实现。递归算法的核心思想是将复杂问题分解为更小的子问题,直到子问题足够简单,可以直接求解。递归算法在许多场景中都非常有用,例如树的遍历、图的搜索、以及一些数学问题的求解(如阶乘、斐波那契数列等)。分治算法(Divide and Conquer):是一种将复杂问题分解为多个相同或相似的子问题,直到子问题可以直接求解,再将子问题的解合并为原问题的解的方法。原创 2024-09-22 02:13:35 · 1580 阅读 · 0 评论 -
LeetCode从入门到超凡(一)枚举算法
本文主要讲解枚举算法。💕💕😊枚举算法通过列举所有可能的解来找到满足条件的解。它是一种“暴力搜索”方法,通过逐一检查每个可能的解,判断其是否满足问题的要求。核心思想:枚举算法的核心思想是“穷举”,即通过系统地列举所有可能的情况,并逐一验证这些情况是否满足问题的条件。这种思想适用于那些解空间较小且可以预先确定的问题。原创 2024-09-18 00:05:27 · 1255 阅读 · 0 评论