【读书周】人工智能(第3版) 第一章概述笔记

此份笔记是个人看书总结见解,如有错误不合理之处可以提出

前言

p11如何规划学时

ch1 3h

ch2 2h

ch3 4h

引言

由潜意识引出什么是人工智能,从人工与智能分开思考

评估智能可以通过问答的间接方式,感觉类似于chatgpt形式

接着具体介绍图灵测试以及相关争议,有人认为测试存在“背答案”,“不会但写出了答案”的漏洞

顺带介绍了艾伦图灵(Alan Turing)的人物轶事

强弱人工智能

Weak AI标准:程序能正确跑,看系统表现就行

Strong AI认为:跟人类相似表现,具有理解和从经验中学习的能力

启发式方法

解决问题的经验指导法则

举了两个例子:

  • 有长方形对角线推出长方体的对角线

  • 水壶倒水从目的状态反向倒推

识别适用人工智能来求解的问题

简单决策,精确计算用传统计算机就能解决

人工智能应用场景在几个例子上体现作用

应用和方法

知识与推理规则

构建智能系统提到了细胞自动机(CA)

接着讲人工智能研究领域应用,下面更多是提起概念,留在后面篇章去探讨细讲

搜索算法和拼图问题

对给定问题的所有状态进行搜索

  • 深度优先搜索(DFS)
  • 广度优先搜索(BFS)

但很多问题不是穷举就能解决的,又探讨出启发式搜索方法,第三章深入再讲

二人博弈

不止专注于自己目标,也要去关注对方并行动

自动推理

场景问题较大且复杂难懂

产生式系统和专家系统

知识表示方法,感觉像是写普遍规则

细胞自动机

通过应用几个简单的规则,就可以创建出非常复杂的模式

两个额外性质:物理拓扑,更新规则

神经计算

通过几个输入与权值的处理结果再与阈值相计算,有点像激活函数

权重的得来是通过迭代学习算法(感知器学习规则)

遗传算法

遗传算法来自于进化计算的一般领域的具体方法,对接近目的的选择方案给更高的权重

知识表示

人工智能为了处理知识,需要获取和存储知识,也需要能够识别和表示知识

从逻辑谈到语义网络再到图的知识表示方法

不确定性推理

引入模糊集概念, 随条件变化而变化,有一个可接受的范围

人工智能的早期历史

走捷径,真【人工】智能

古代也有人发现人类推理的能力,这个小章节篇幅也是在介绍知名人物对理论与技术的推进,为人工智能演变打基础

近期历史到现在

  • 计算机博弈–下棋发展,到现在大家都知道的alphago

  • 专家系统 --特性适合ai的研发和开发,使用知识库和推理规则模仿人类专家决策能力解决领域特定问题

  • 神经计算–感知器与反向传播算法

  • 进化计算–优化以及与环境交互出现智能

  • 自然语言处理–假装有感知情绪能力模拟心理治疗师,语法语义分析还需要常识补全

  • 生物信息学–蛋白质结构分析,个人提一嘴现在的alphaold进步确实快

新千年人工智能的发展

各种存在的问题比如说道德伦理,有挑战需要做好思考准备

本章小结

讨论题

参考答案

练习题

1.图灵测试的一种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空LA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值