文章目录
此份笔记是个人看书总结见解,如有错误不合理之处可以提出
前言
p11如何规划学时
ch1 3h
ch2 2h
ch3 4h
引言
由潜意识引出什么是人工智能,从人工与智能分开思考
评估智能可以通过问答的间接方式,感觉类似于chatgpt形式
接着具体介绍图灵测试以及相关争议,有人认为测试存在“背答案”,“不会但写出了答案”的漏洞
顺带介绍了艾伦图灵(Alan Turing)的人物轶事
强弱人工智能
Weak AI标准:程序能正确跑,看系统表现就行
Strong AI认为:跟人类相似表现,具有理解和从经验中学习的能力
启发式方法
解决问题的经验指导法则
举了两个例子:
-
有长方形对角线推出长方体的对角线
-
水壶倒水从目的状态反向倒推
识别适用人工智能来求解的问题
简单决策,精确计算用传统计算机就能解决
人工智能应用场景在几个例子上体现作用
应用和方法
知识与推理规则
构建智能系统提到了细胞自动机(CA)
接着讲人工智能研究领域应用,下面更多是提起概念,留在后面篇章去探讨细讲
搜索算法和拼图问题
对给定问题的所有状态进行搜索
- 深度优先搜索(DFS)
- 广度优先搜索(BFS)
但很多问题不是穷举就能解决的,又探讨出启发式搜索方法,第三章深入再讲
二人博弈
不止专注于自己目标,也要去关注对方并行动
自动推理
场景问题较大且复杂难懂
产生式系统和专家系统
知识表示方法,感觉像是写普遍规则
细胞自动机
通过应用几个简单的规则,就可以创建出非常复杂的模式
两个额外性质:物理拓扑,更新规则
神经计算
通过几个输入与权值的处理结果再与阈值相计算,有点像激活函数
权重的得来是通过迭代学习算法(感知器学习规则)
遗传算法
遗传算法来自于进化计算的一般领域的具体方法,对接近目的的选择方案给更高的权重
知识表示
人工智能为了处理知识,需要获取和存储知识,也需要能够识别和表示知识
从逻辑谈到语义网络再到图的知识表示方法
不确定性推理
引入模糊集概念, 随条件变化而变化,有一个可接受的范围
人工智能的早期历史
走捷径,真【人工】智能
古代也有人发现人类推理的能力,这个小章节篇幅也是在介绍知名人物对理论与技术的推进,为人工智能演变打基础
近期历史到现在
-
计算机博弈–下棋发展,到现在大家都知道的alphago
-
专家系统 --特性适合ai的研发和开发,使用知识库和推理规则模仿人类专家决策能力解决领域特定问题
-
神经计算–感知器与反向传播算法
-
进化计算–优化以及与环境交互出现智能
-
自然语言处理–假装有感知情绪能力模拟心理治疗师,语法语义分析还需要常识补全
-
生物信息学–蛋白质结构分析,个人提一嘴现在的alphaold进步确实快
新千年人工智能的发展
各种存在的问题比如说道德伦理,有挑战需要做好思考准备
本章小结
讨论题
练习题
1.图灵测试的一种