
论文阅读
文章平均质量分 83
论文阅读笔记
万里守约
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【论文阅读】Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM
本文提出一种基于自适应分辨率SAM的无监督人群计数与定位方法,通过改进SEEM模型引入自适应分辨率策略,有效提升密集和遮挡场景的分割能力。创新点包括:利用GMM模型精准定位人头位置生成伪标签,设计鲁棒损失函数排除不确定区域,以及采用迭代优化策略逐步提升伪标签质量。该方法在多个数据集上超越现有无监督方法,接近部分监督方法性能,为解决无标注场景下的密集人群分析提供了高效方案。实验表明该方法具有强实用性和推广潜力,推动了无监督人群分析技术的发展。原创 2025-05-26 10:36:44 · 922 阅读 · 1 评论 -
【论文阅读】Visual Instruction Tuning
论文题目:研究领域:作者单位:论文来源:NIPS2023本文在多模态指令跟随领域做出了重要的贡献,通过引入视觉指令调优的概念和技术,成功地开发出LLaVA这一端到端的多模态助手模型。LLaVA不仅展示了在视觉和语言理解任务中的强大能力,还通过生成高质量的指令数据,为模型训练打下了坚实的基础。建立的LLaVA-Bench评估基准进一步推动了模型性能的系统性评估,为未来的研究提供了有力支持。我们期待这些创新能够激发更多研究者的兴趣,拓展多模态模型的应用和发展,最终实现更为智能和人性化的互动系统。原创 2025-04-23 10:41:07 · 1178 阅读 · 0 评论 -
【论文阅读】实时全能分割模型
论文题目:研究领域:计算机视觉、图像分割作者单位:北京大学、南洋理工大学、加州大学默塞德分校、上海AI实验室等论文链接:论文来源:ICLR2025RMP-SAM是一种高效的实时多任务分割模型,兼具交互式分割、全景分割和视频实例分割功能。它采用动态卷积和双适配器设计,以提升准确性和泛化能力。该模型在智能驾驶、视频编辑、增强现实、医疗图像分析和人机交互等领域具有广泛应用潜力,能够实时检测和分割对象,提高各类任务的效率与安全性。原创 2025-03-19 16:16:25 · 1081 阅读 · 0 评论 -
【论文阅读】SAM-CP:将SAM与组合提示结合起来的多功能分割
论文题目:研究领域:计算机视觉、语义分割、实例分割、多模态论文作者:论文来源;ICLR 2025SAM-CP增强了SAM模型的语义分割和实例分割的能力,推动图像大模型的进一步发展提供了新思路。在具体的应用场景内,缺乏对应文本标签,如何有效地将特定领域内的文本标签与图像掩码进行匹配是未来研究的挑战。原创 2025-02-21 09:46:30 · 1102 阅读 · 0 评论 -
【论文阅读】从单张图像到高质量3D模型的快速生成方法
论文题目:研究领域:三维场景重建论文作者:Haoyu Wu、Meher Gitika Karumuri、 Chuhang Zou等论文链接:本文提出了一种从单个图像直接生成显式3D几何和纹理的新框架,通过结合Stable Diffusion模型、极线注意力、多视角一致性和高斯投影技术,有效解决了现有方法计算成本高、多视角一致性差和生成质量不足的问题。实验表明,该方法在3D几何精度、纹理质量和生成速度方面均优于现有的最先进方法,显著推进了单视角3D生成的性能和实用性。原创 2024-12-17 15:52:24 · 1224 阅读 · 0 评论 -
【论文阅读】利用SEM二维图像表征黏土矿物三维结构
该方法通过SEM图像的灰度分层实现3D重构,克服了传统2D图像在深度信息上的局限,为黏土矿物对储层孔隙结构和流体流动的影响研究提供了有力支持。未来可以结合更高分辨率的图像和更复杂的图像处理算法,进一步提升三维重构的精度和应用范围。原创 2024-11-12 17:08:16 · 1460 阅读 · 0 评论 -
【论文阅读】SAM 2: 分割一切图像和视频
论文提出的 SAM 2 在视频和图像分割方面实现了显著的性能提升,尤其是在减少用户互动次数的同时仍保持高精度分割。通过构建大规模且多样化的数据集,SAM 2 为视觉感知领域的视频分割和相关任务的进一步研究提供了重要的里程碑。SAM 2 的发布将有助于推动视频分割技术在 AR/VR、机器人、自主车辆和视频编辑等领域的广泛应用。未来的研究应该侧重于减少模型参数,提升模型的推理速度,使得其能够真正在广泛的实际场景中进行应用。原创 2024-10-14 14:41:14 · 1978 阅读 · 0 评论 -
【论文阅读】视觉分割新SOTA: Segment Anything(SAM)
SAM模型的出现推动了计算机视觉领域对于视觉基础模型的进一步研究,但仍需克服一些关键技术挑战。未来的工作可以提高SAM的推理速度和精度,特别是在处理大规模数据时,应集中在优化模型结构、推理算法和硬件加速等方面的性能提升。其次,SAM对大量标注数据的依赖成本高昂,限制了其在下游任务上的广泛应用。未来研究可以关注半监督或自监督学习方法,减轻数据标注负担,提高模型泛化能力。原创 2024-09-10 17:59:33 · 1737 阅读 · 0 评论 -
【论文阅读】Formation damage mechanism of a sandstone reservoir based on micro-computed tomography
为了更清楚地理解颗粒迁移的机制,研究者设计了一个二维微观渗流通道模型,并使用有限元方法进行数值模拟。这种模型能够直观反映颗粒在多孔介质中的迁移行为。原创 2024-07-24 10:53:30 · 345 阅读 · 0 评论 -
应力敏感性调研
应力敏感性(Stress Sensitivity):岩石所受净上腹压力改变时,孔喉通道变形、裂缝闭合或张开,导致储层岩石渗透率发生变化的现象。在油气开采中,随着储层中流体流出,储层孔隙压力降低,储层岩石原有受力平衡状态发生变化。根据岩石力学理论,从一个应力状态变到另一个应力状态必然要引起岩石的压缩或拉伸,即岩石发生弹性或塑性变形,同时,岩石的变形必然要引起岩石孔隙结构和孔隙体积的变化,如孔隙体积的缩小、孔隙喉道和裂缝的闭合等,这种变化将大大影响到流体在其中的渗流。原创 2024-07-18 19:06:47 · 934 阅读 · 0 评论 -
【论文阅读】使用深度学习及格子玻尔兹曼模拟对SEM图像表征粘土结构及其对储层的影响
1.1 使用AlexNet网络,数据集199张高分辨率SEM图像,训练集1380+348=1728张,测试集432张,共2160张小图(227px*227px),包括数据增强。(b) 在数值模拟中,本研究仅考虑伊利石,而需要进一步尝试来表征蒙脱石、绿泥石和溶孔如何干扰流体流动。(c)深度切片方法解决了传统 2D SEM图像分割任务中遇到的“景深”问题,然而这需要人工细心分割,(a) 深度图,颜色表示为红色(浅)、绿色(中深度)、蓝色(深)和黑色(背景);(f) 深度切片的3D表示。原创 2024-05-24 17:13:23 · 494 阅读 · 0 评论 -
【论文阅读】微纳米气泡技术作为CO2-EOR和CO2地质储存技术的新方向:综述
本文综述了微气泡和纳米气泡领域的研究进展,重点介绍了CO2-EOR和CO2地质封存。简要介绍了微泡和纳米泡的分类及其组成。详细研究了微纳气泡的制备方法及影响其性能的主要因素。综述了微泡和纳米泡技术的表征参数和最新的测量分析技术。并对其在CO2EOR和CO2地质封存中的主要应用进行了讨论。在此基础上,指出了CO2-EOR和CO2地质封存领域中微纳米气泡(Micro and Nanobubbles)研究的各种潜在领域和空白,以供进一步研究。原创 2024-02-28 17:41:01 · 3151 阅读 · 1 评论 -
【论文阅读】基于图像处理和卷积神经网络的板式换热器气泡识别与跟踪
本研究提出了一种某某某可视化平台的气泡识别与跟踪新方法。首先,利用卷积神经网络(CNN)和改进的三帧差分(ITFD)方法,从捕获的视频中检测并获得PHE透明通道中气泡流的位置和状态;然后,采用IoU筛选算法对结果进行优化。最后,计算气泡的位置和速度。此外,还得到了局部雷诺数韦伯数和弗劳德数等无量纲参数。结果表明,该方法能够准确识别和跟踪单个气泡的破裂、合并和碰撞等时空行为。在PHE通道中存在大量密集气泡的情况下,该方法的平均准确率可达94%以上,召回率可达87%以上,F1得分为0.91。原创 2024-02-27 16:45:47 · 1322 阅读 · 0 评论 -
【论文阅读】基于深度学习的R-134a气泡检测和分析方法—用于地热应用
基于深度学习的R-134a气泡检测与分析方法—地热应用原创 2024-02-27 11:28:30 · 586 阅读 · 1 评论 -
【论文阅读】基于人工智能目标检测与跟踪技术的过冷流沸腾气泡特征提取
本文提出了一种利用目标检测和跟踪技术提取鲁棒冷凝气泡特征的新方法——针对过冷流沸腾的分析。提出的YOLO人工智能模型在每个气泡的整个生命周期内有效地捕获时间和空间信息。原创 2024-02-27 11:11:10 · 1700 阅读 · 3 评论 -
【论文阅读】深度学习在过冷沸腾气泡动力学分割中的应用
13、不同噪声条件下的效果对比:原图、对比度增强、锐化、高斯模糊、高斯噪声(10,25)、各自的IoU对比。9、有无迁移学习、不同训练数据量的性能对比:P、R、[email protected]、[email protected]:0.95。6、YOLO算法架构(主干、颈部、头部)及流程说明,主干架构中各个模块介绍。4、实验过程中气泡状态展示:正常气泡、非椭圆形气泡、合并、流动、紧密排列。12、不同气泡类型的检测效果图:小、中、大,紧密接触、合并。5、经典图像算法介绍(商用软件、开源代码、CNN)8、评价指标介绍、数据集介绍、迁移学习介绍。原创 2024-02-25 16:23:52 · 922 阅读 · 0 评论 -
2024.01.06石工院博士第一次开题论证会总结
2024.01.06 石工院博士第一次开题论证会总结。原创 2024-01-07 14:14:04 · 431 阅读 · 0 评论 -
【论文阅读】深度学习方法在数字岩石技术中的应用进展
本文为论文阅读总结。Advances in the application of deep learning methods to digital rock technology原创 2023-12-14 20:07:12 · 1079 阅读 · 0 评论