在window系统下跑yolo5【记录+心得】


前言

【2024/6/3】2号花了一天时间训练了200张图片,搞了个元件检测的数据集合。于是加入了调用检测视频的指令。但是识别视频的过程不能调用出来,我很不满意。

训练步骤总结

总的来说 YOLO安装就是四个步骤
1、环境安装
2、数据集制作
3、训练模型
4、预测图片


一、环境安装

去github下载大佬的文件或者用
git clone xxx
GitHub中文站真的是个好东西啊~!
在这里插入图片描述

查看GPU有没有

查看自己的电脑的电脑是不是支持GPU
(该指令仅适用于 NVIDIA 的GPU)

nvidia-smi

是11.2版本的

在这里插入图片描述
顺便一提,CPU跑起来真的太费劲了,我之前训练的模型,只有20张图片,跑起来CPU直接拉满 ,时刻担心蓝屏警告 ~ O ~
在这里插入图片描述
所以各位,如果可以还是GPU吧!

小步骤
conda安装

首先,在conda创建环境.

conda create -n toyolo2 python==3.9

创建好,进入

conda activate toyolo2

在这里插入图片描述
下载PyTorch

这一步蜜汁步骤就是为了证明,CUDA官网给的版本是要求的最低版本

我这里下载了个CUDA 11.3的

# CUDA 11.3
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

在这里插入图片描述
显示是错误的,看来列出的版本是最低需求的。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值