前言
【2024/6/3】2号花了一天时间训练了200张图片,搞了个元件检测的数据集合。于是加入了调用检测视频的指令。但是识别视频的过程不能调用出来,我很不满意。
训练步骤总结
总的来说 YOLO安装就是四个步骤
1、环境安装
2、数据集制作
3、训练模型
4、预测图片
一、环境安装
去github下载大佬的文件或者用
git clone xxx
GitHub中文站真的是个好东西啊~!
查看GPU有没有
查看自己的电脑的电脑是不是支持GPU
(该指令仅适用于 NVIDIA 的GPU)
nvidia-smi
是11.2版本的
顺便一提,CPU跑起来真的太费劲了,我之前训练的模型,只有20张图片,跑起来CPU直接拉满 ,时刻担心蓝屏警告 ~ O ~
所以各位,如果可以还是GPU吧!
小步骤
conda安装
首先,在conda创建环境.
conda create -n toyolo2 python==3.9
创建好,进入
conda activate toyolo2
下载PyTorch
这一步蜜汁步骤就是为了证明,CUDA官网给的版本是要求的最低版本
我这里下载了个CUDA 11.3的
# CUDA 11.3
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
显示是错误的,看来列出的版本是最低需求的。