Jetson AGX Orin安装CUDA+Anaconda+PyTorch+ROS

本文档详细介绍了如何在Jetson Orin上安装SDK Manager、Anaconda、PyTorch及TorchVision,并配置ROS环境的过程。从SDK Manager的安装到各软件包的具体配置步骤,包括解决安装过程中可能遇到的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、官网安装SDK Manager

(1)官网下载:SDK Manger下载网址
(2)安装指令:sudo dpkg -i 安装包路径;
(3)该过程可能会遇到缺少“libgconf-2-4”报错,解决办法是需要先升级和安装部分库:

sudo apt --fix-broken install 
sudo apt-get upgrade
sudo apt update

(4)再次安装即可;

2、打开SDKManager

(1)选择Target Hardware – Jstson Orin
(2)取消勾选Host Machin,勾选Target Harware、TARGET OPERARTING SYSTEM、ADDITIONAL SDKS
(3)coutinue to step 02;
(4)创建相关文件夹并开始下载各种安装包
(5)勾选“I accept the terms and …”,不勾选“Jetson Linux”(不需要刷机)、“Download now…”;
(6)coutinue to step 03;
(7)skip 弹出的flash刷机页面;
(8)在接下来弹出的页面Connection中选择Ethernet,接着在IPv4输入orin的IP地址,最后输入Orin的Username、Password,点击Install;
(9)点击Finish,完成安装;若中途发生报错,在Orin终端中输入 nvcc -V 查看cuda是否安装,已经安装成功即可进行下一步;

3、安装Anaconda

(1)进入https://www.anaconda.com/products/distribution#Downloads
(2)下载64-Bit (AWS Graviton2 / ARM64) Installer(注意下载ARM64版本);
(3)终端输入 bash Anaconda3-XXXX.XX-Linux-x86_64.sh;
(4)根据提示不断输入yes,按回车,完成安装;
(5)创建conda环境,conda create -n torch12 python=3.8;

4、安装Pytorch和TorchVision

#参考网址:
查看Jetson相关信息:http://www.gpus.cn/gpus_list_page_techno_support_content?id=39
下载PyTorch安装包:https://elinux.org/Jetson_Zoo#PyTorch_.28Caffe2.29
PyTorch官网:https://github.com/pytorch/pytorch
TorchVision官网:https://github.com/pytorch/vision
下载TorchVision安装包:https://download.pytorch.org/whl/torch_stable.html

#根据Jetson版本下载安装包,例如JetPack 5.0 -> PyTorch v1.12.0 -> TorchVision v0.13.0

#安装
(1)进入创建好的conda环境:

conda activate torch12;

(2)安装依赖、pip、torch:

sudo apt-get install libopenblas-base libopenmpi-dev
sudo apt-get install python3-pip
pip3 install Cython
pip3 install opencv-python
pip3 install tqdm
pip3 install rospkg
sudo apt install ros-noetic-usb-cam
pip3 install numpy torch-1.12.0a0+2c916ef.nv22.3-cp38-cp38-linux_aarch64.whl
pip3 install numpy torchvision-0.13.0-cp38-cp38-manylinux2014_aarch64.whl

#测试安装是否成功

python3
import torch # no error appears
print(torch.__version__) # get 1.12.0
print(torch.cuda.is_available()) # get Ture
import torchvision # no error appears

5、安装ROS

一行代码安装指令:

wget http://fishros.com/install -O fishros && . fishros

参考网址:鱼香ROS

### 安装与配置 Miniconda 在 Jetson AGX Orin 设备上的方法 在 Jetson AGX Orin安装和配置 Miniconda 是一种常见的做法,用于管理 Python 虚拟环境以及依赖项。以下是关于如何完成这一过程的具体说明: #### 下载 Miniconda 首先需要下载适用于 ARM 架构的 Miniconda 版本。由于 Jetson AGX Orin 使用的是基于 ARM 的处理器架构,因此必须选择支持该架构的版本。 可以通过访问官方 Miniconda 网站获取最新版链接并执行如下命令来下载适合的文件: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh ``` 上述命令会从 Anaconda 提供的存储库中拉取最新的 Linux aarch64 支持的 Miniconda 文件[^1]。 #### 执行安装脚本 下载完成后,通过赋予脚本可执行权限来进行安装操作: ```bash chmod +x Miniconda3-latest-Linux-aarch64.sh ./Miniconda3-latest-Linux-aarch64.sh ``` 按照提示逐步完成安装流程,通常包括阅读许可协议、确认安装路径等内容。默认情况下,它会被放置于用户的 home 目录下 `~/miniconda3` 中[^2]。 #### 初始化设置 为了使 Conda 命令能够在终端全局生效,需初始化当前 shell 配置文件或者直接激活 conda: ```bash source ~/miniconda3/bin/activate ``` 如果希望每次打开新终端都能自动加载,则可以将其加入到 `.bashrc` 或者其他对应的启动脚本里去[^3]。 #### 创建虚拟环境 利用 Conda 来创建隔离的工作空间是非常方便的一件事。例如要建立一个名为 myenv 并指定 python 为特定版本号 (如这里是 3.8) 的环境时可以用下面这条指令实现: ```bash conda create --name myenv python=3.8 ``` 之后切换至新建好的这个环境下继续工作即可: ```bash conda activate myenv ``` 需要注意的是,在某些特殊场景下可能会遇到兼容性问题,比如当尝试构建针对较低版本 Python(像Python 3.6)的支持时可能失败的情况已被提及过[^4]。此时可以选择调整目标版本或是寻找替代方案解决此类冲突现象。 #### 测试 PyTorchROS 是否正常运作 一旦完成了以上步骤并且进入了正确的 conda environment 后就可以测试所关心的功能模块是否能够顺利导入了。对于深度学习框架而言就是验证能否成功引入 pytorch 库;而对于机器人操作系统来说则是确保 ros core 及其关联包均处于良好状态之中[^5]。 ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值