如何看网络训练中的Loss曲线和Acc曲线

理解训练曲线图(loss/accuracy 随 epoch 变化的曲线)是评估和诊断模型训练质量的 核心能力。煮啵从以下四方面详细讲解这类图怎么看、怎么判断模型状态、问题有哪些、该如何处理。

这个是煮啵之前写的一个小体量的网络模型的训练曲线
在这里插入图片描述

✅ 一、训练曲线怎么看?

1. Loss Curve(损失曲线)

左图是:

  • 蓝线(Train Loss):训练集上的损失
  • 橙线(Val Loss):验证集上的损失

损失越小越好。

理想状态(Loss):

  • Train Loss 和 Val Loss 同时下降
  • 最终都趋于平稳;
  • 两者数值接近(差距不大) ➜ 泛化性好。

2. Accuracy Curve(准确率曲线)

右图是:

  • 蓝线(Train Acc):训练集上的准确率
  • 橙线(Val Acc):验证集上的准确率

准确率越高越好。

理想状态(Accuracy):

  • 两者 同步上升
  • 最终都趋于饱和或稳定;
  • 验证准确率与训练准确率 差距小 ➜ 模型没有过拟合。

❌ 二、常见“非理想”曲线和原因分析

❗️情况 1:验证损失下降后开始上升(过拟合)

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/21eae7b7989e40f7930758c9ea3dc71f.png#pic_cente

表现

  • Train Loss 持续下降
  • Val Loss 在某个点开始上升
  • Val Accuracy 停滞或下降

原因

  • 模型学会了训练集的细节,无法泛化新数据
  • 训练时间太长,参数拟合了噪声

应对

  • 增加正则化(Dropout / L2)
  • 加数据增强
  • 减小模型容量
  • EarlyStopping

❗️情况 2:验证损失波动很大(训练不稳定)

比如酱紫(煮啵这里用了0.001的学习率,对于煮啵写的小网络而言过大)
在这里插入图片描述

表现

  • Val Loss 曲线上下抖动剧烈
  • Val Accuracy 跳来跳去

原因

  • 学习率太大(比如 0.001 在小模型中可能不稳定)
  • 小批量样本不均衡
  • 模型太小难以学到有效表示

应对

  • 减小学习率
  • 增加 batch size
  • 使用更稳定的优化器(Adam、AdamW)
  • 添加 BatchNorm 层

❗️情况 3:训练准确率高但验证准确率低(过拟合)

表现

  • Train Acc → 很高(>90%)
  • Val Acc → 停留在某个值(<70%)

原因

  • 模型复杂,学习了训练集的细节但不能泛化
  • 数据集太小/不平衡

应对

  • Dropout 或 L2 正则
  • 增加训练数据或数据增强
  • 降低模型复杂度

❗️情况 4:训练和验证都不收敛(欠拟合)

表现

  • Train Loss 不下降或下降极慢
  • Acc 都停在低值

原因

  • 模型太简单
  • 学习率太小
  • 输入数据未标准化

应对

  • 用更深的模型
  • 增大学习率(但别太大)
  • 检查特征是否规范化(标准化输入特征)

🔍 三、快速判断策略(小总结表)

曲线表现可能问题解决方向
Val Loss 上升过拟合正则、早停、减复杂度
Val Loss 抖动大学习率高、数据不稳降学习率、BatchNorm
Val Acc 远低于 Train Acc泛化差加 Dropout、数据增强
两条 Loss 都不下降欠拟合或错误检查模型、特征、学习率

✨ 四、煮啵的图像评价(lr=0.0005)

最新训练图表现属于非常理想的情况

  • 损失曲线稳定下降;
  • 准确率曲线平滑上升;
  • 验证表现和训练表现接近;
  • 没有明显的过拟合、欠拟合或不稳定现象。

🎯 说明:模型结构合理、优化器和学习率配置得当。

最后补充一点关于学习率的东西

学习率(learning rate)是神经网络训练中最重要的超参数之一,它控制着模型每次参数更新的幅度。如果学习率选得不好,训练可能会非常慢、陷入局部最优,甚至完全失败。

🧠 一、学习率到底是什么?

在基于梯度下降的优化中,模型的参数 $\theta$ 会这样更新:

θ = θ − η ⋅ ∇ θ L \theta = \theta - \eta \cdot \nabla_{\theta} L θ=θηθL

其中:

  • θ \theta θ:模型参数
  • η \eta η:学习率(learning rate)
  • ∇ θ L \nabla_{\theta} L θL:损失函数对参数的梯度

⚠️ 二、学习率选得不好的后果

学习率太小:

  • 收敛非常慢(训练时间长)
  • 可能停在局部最优
  • 很难跳出鞍点或平坦区域

学习率太大:

  • 参数更新剧烈,可能直接跳过最优点
  • Loss 震荡甚至发散
  • 训练结果不稳定、无法收敛

📏 三、学习率选取的 依据和原则

✅ 1. 经验法则(初始设置)

  • 对于大多数情况(特别是使用 Adam 优化器):

    • 初始学习率0.001 是常用的初始值
  • 对于 SGD:

    • 初始值可以设为 0.10.01

✅ 2. 看 loss 曲线调整(最常见的方法)

  • 如果 loss 曲线下降缓慢或停滞 → 学习率太小
  • 如果 loss 不断波动甚至变大 → 学习率太大

图示理解

Loss 曲线形态原因建议
平稳下降学习率合适保持不变
缓慢下降学习率太小提高学习率
上上下下震荡学习率太大减小学习率
loss 突然爆炸学习率极大或 NaN 梯度显著减小学习率

📉 四、常见学习率策略

1. 固定学习率(最简单)

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

适合:简单模型、小数据集、调试用。


2. 学习率衰减(推荐)

随着训练进行,适当降低学习率,让模型更细致地搜索最优解。

a. StepLR

每隔几轮将学习率乘以一个因子

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
b. ExponentialLR

指数式衰减

scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
c. ReduceLROnPlateau(非常实用)

监控验证集 loss,停止下降则降低学习率

scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5)

3. Warmup + CosineDecay(SOTA 推荐)

  • 一开始用较小学习率“预热”,避免初期震荡
  • 然后用余弦衰减控制训练后期收敛

适合:大型模型、大数据集、transformer 网络

from transformers import get_cosine_schedule_with_warmup
scheduler = get_cosine_schedule_with_warmup(optimizer, 
                                            num_warmup_steps=1000, 
                                            num_training_steps=10000)

🧪 五、实战建议(超具体)

场景优化器学习率推荐范围
小模型(MLP, LeNet)Adam0.001 – 0.005
中型模型(ResNet18)SGD0.01 – 0.1 + 衰减
大型模型(ViT, Transformer)AdamWWarmup + CosineDecay
微调预训练模型AdamW1e-5 – 1e-4

🔍 六、怎么调学习率?(非常详细)

步骤 1️⃣:先用大概学习率开始训练(如 0.001)

步骤 2️⃣:观察 loss 曲线

  • 稳步下降:很好
  • loss 上下跳:减小一位(0.0001)
  • loss 降得慢:增加一位(0.01)

步骤 3️⃣:用调度器调控(如 StepLR 或 ReduceLROnPlateau)

步骤 4️⃣(进阶):使用学习率 finder 工具

比如 fastai 的 lr_find()


✅ 总结一句话

学习率控制了你每次训练“走多远”——太小走不动,太大走错路,选好学习率比网络结构还关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值