ShuffleNet and SENet

本文介绍了ShuffleNet利用分组卷积解决信息缺失问题,通过1x1卷积增强组间通信;同时,SENet通过Squeeze-and-Excitation模块让模型学习不同channel特征的重要性,提升网络性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、ShuffleNet

分组卷积

分组之后,组间信息不沟通的问题,导致信息缺失
MobileNet:建议1*1的卷积,把信息融合起来
ShuffleNet :把通道打乱,组间信息通信

在这里插入图片描述

ShuffleNet Units

在这里插入图片描述

网络结构

在这里插入图片描述


二、SENet

SENet 网络的创新点在于关注 channel 之间的关系,希望模型可以【自动学习到不同 channel 特征的重要程度】。为此,SENet 提出了 【Squeeze-and-Excitation(SE)】模块。

核心思想

SENet 网络的创新点在于关注 channel 之间的关系,希望模型可以自动学习到不同 channel 特征的重要程度。
为此,SENet 提出了 Squeeze-and-Excitation(SE)模块。

对于一张图片,不同的 channel 的权重一般都是不一样的。
如果,我们能够把这个信息捕获出来,那么我们的网络就可以获得更多的信息,
那么自然就拥有更高得准确率。

SE模块

SE:Squeeze-and-Excitation

![在这里插入图片描述](https://img-blog.csdnimg.cn/734fd529e3564f4794f98c3be615f385.png在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值