最近在配置深度学习环境,CUDA,PyTorch,GCC 之间的版本关系是特别需要注意的事情,否则代码根本运行不起来,或者运行报错。
PyTorch
首先 PyTorch 的不同版本是不完全兼容的,所以在配置环境时要看清楚要求的版本,然后 PyTorch 对 CUDA 的版本有要求,可以通过接口查看支持的 CUDA 最高版本:
import torch
print(torch.__version__)
print(torch.cuda_is_available())
或者直接使用以下命令去查看安装的有哪些库:
pip list
CUDA与nvidia driver版本之间的对应关系
Linux x86_6 |
---|