最优化课堂笔记04:非线性规划(考点4-5例题)

目录

 

4.1 多元函数的泰勒展开

4.2方向导数与梯度

4.2.1方向导数

n元函数在点沿特定方向的方向导数

4.2.2梯度

4.3二次函数及正定矩阵

4.4凸函数与凸规划

4.4.1凸函数

4.4.2凸规划

4.4无约束优化问题的极值条件

4.5约束优化问题的极值条件(重点考点)

例:考点重点(判断一个点是否为这规化的最优极值点)

因为目标函数和约束函数都凸函数,而点(1,0)又符合K-T条件,因此该点是全局最优约束极值点


4.1 多元函数的泰勒展开

求解海森矩阵:

例1:

 

例2:

 

4.2方向导数与梯度

4.2.1方向导数

n元函数在点沿特定方向的方向导数

4.2.2梯度

4.3二次函数及正定矩阵

4.4凸函数与凸规划

4.4.1凸函数

4.4.2凸规划

4.4无约束优化问题的极值条件

海森矩阵怎么求解

4.5约束优化问题的极值条件(重点考点)

例:考点重点(判断一个点是否为这规化的最优极值点)

求解步骤:

1.判断所给点是否为可行点,即看是否满足约束条件

2.从约束条件中找到起作用的约束条件,即约束条件等于0

3.求出目标函数与起作用的约束函数的梯度

4.将梯度带入等式条件中列出等式,算出拉格朗日乘子

5.若拉格朗日因子是非负非零则是极值点

6.判断是否为全局最优极值点:目标函数和起作用的约束函数是凸函数,且所给点满足K-T条件,则为全局最优极值点

 

因为目标函数和约束函数都凸函数,而点(1,0)又符合K-T条件,因此该点是全局最优约束极值点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有情怀的机械男

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值