CUDA编程入门系列(十一)CUDA程序优化技巧

本文介绍了CUDA编程中关于线程块大小、数量优化,以及如何最大化Occupancy,减少CPU-GPU数据传输,充分利用共享内存,和优化全局内存与内存访问模式。着重讲解了指令优化的原则,以提升CUDA程序性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        优化原则:最大化并行执行

        探索并行化:

        优化线程块的规模 

         我们在设计CUDA程序的时候,要对线程块的个数进行考虑。因为GPU中流处理器SM的数量是相对固定的,所以我们应该尽量的将多个block放到同一个SM当中(至少保证每个SM中都有一个块),使得SM时刻处于活跃状态。但如果块所需资源过多,那么一个SM能够同时处理的块就比较少。

        优化线程块的大小 

        因为SM是以warp为单位的,那么我们就要尽量的保证块的大小是32的倍数,使得所有的warp中所有的线程都处于活跃状态。如果块上的线程多的话,就可以隐藏一些内存的延迟。但是,如果一个块上的线程越多,每个线程拥有的寄存器大小就越小。

        最大化Occupancy 

        基本策略

 

        极小化CPU和GPU之间的数据传输

 

        极大化使用共享内存

 

        优化内存使用模式

        全局内存:对齐与合并访问

 

共享内存:防止bank conflict

        优化优先级

 

        指令优化:原则 

 

结论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值