如何修改冻结的预训练模型的网络结构

在冻结预训练模型的部分参数或层之后,仍可以对模型的结构进行修改,以便更好地适应下游任务。以下是几种常见的修改方法:

1. 添加新的层

  • 直接在模型上添加新的层,常用于增加下游任务的分类头或回归头。例如,添加一个新的全连接层用于分类。
  • 新增的层会随机初始化,通常不会冻结它们,以便在训练时适应任务需求。
import torch.nn as nn

class ModifiedModel(nn.Module):
    def __init__(self, pretrained_model):
        super(ModifiedModel, self).__init__()
        self.base_model = pretrained_model
        self.new_head = nn.Sequential(
            nn.Linear(pretrained_model.hidden_size, 512),
            nn.ReLU(),
            nn.Linear(512, num_classes)  # num_classes为你的下游任务分类类别数
        )

    def forward(self, x):
        features = self.base_model(x)
        output = self.new_head(features)
        return output

2. 替换特定层

  • 有时我们希望替换冻结模型中的某些层,例如替换预训练模型中的分类层以适应新的类别数。
  • 可以直接替换 pretrained_model.layer 中的特定层。
# 替换某个层
model.base_model.layer_name = NewLayerClass()  # 替换原有的层

3. 增加跳接连接(Skip Connections)

  • 如果希望在不影响冻结层的前提下添加更多上下游层的交互,可以引入跳接连接。例如,将模型的一部分输出送入其他新层,并在后续层进行融合。
class SkipConnectedModel(nn.Module):
    def __init__(self, pretrained_model):
        super(SkipConnectedModel, self).__init__()
        self.base_model = pretrained_model
        self.additional_layer = nn.Linear(pretrained_model.hidden_size, 512)
        self.final_layer = nn.Linear(pretrained_model.hidden_size + 512, num_classes)

    def forward(self, x):
        base_features = self.base_model(x)
        additional_features = self.additional_layer(base_features)
        combined_features = torch.cat([base_features, additional_features], dim=1)
        output = self.final_layer(combined_features)
        return output

4. 解冻部分层

  • 虽然整体模型被冻结,但可以选择性地解冻部分层或块进行训练。
  • 这通常应用于微调的最后几层,使模型能更好地适应新的数据分布。
# 解冻最后几层
for name, param in model.named_parameters():
    if "layer_name" in name:  # 通过名称选择性解冻
        param.requires_grad = True

5. 修改模型的输入或输出结构

  • 如果输入结构不匹配,可以通过添加输入处理层对输入进行预处理。
  • 对输出进行修改也类似,可以在最后添加一个处理层来对特征进行适配。

实例代码

假设我们使用的是一个预训练的视觉Transformer模型,可以通过以下代码添加新的任务头,并选择性地解冻模型的后几层:

import torch
import torch.nn as nn

class ModifiedViLT(nn.Module):
    def __init__(self, pretrained_model, num_classes):
        super(ModifiedViLT, self).__init__()
        self.base_model = pretrained_model
        self.new_head = nn.Linear(pretrained_model.hidden_size, num_classes)
        
        # 冻结所有参数
        for param in self.base_model.parameters():
            param.requires_grad = False
            
        # 选择性解冻最后一个Transformer层
        for param in self.base_model.transformer.layers[-1].parameters():
            param.requires_grad = True

    def forward(self, x):
        base_features = self.base_model(x)
        output = self.new_head(base_features)
        return output

以上方法可以帮助在不影响冻结层的前提下,修改预训练模型的结构以更好地适应下游任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值