1-基于强化学习的图Transformer算法求解车辆路径问题(2023)(完)


Abstract

车辆路径问题(VRP)是经典的组合优化问题之一,需要在一些约束条件下,以最小的总成本访问客户。最近,VRP通过使用深度强化学习(DRL)来解决,将节点集视为图结构。现有的基于Transformer的DRL解仅依赖于节点信息,忽略了图中节点之间边的信息在图结构中的作用。在本文中,我们提出了一种基于注意力的端到端DRL模型来解决VRP,该模型嵌入了节点之间的边信息,以进行丰富的图表示学习。我们使用了带有嵌入边信息多头注意力(EEMHA)层的基于Transformer的编码器-解码器框架。基于EEMHA的编码器学习图的底层结构,并通过合并节点和边信息生成表达力强的图拓扑表示。我们使用近端策略优化(PPO)和一些代码级优化技术训练我们的模型。我们在随机生成的实例和从道路网络生成的真实世界数据上进行了实验,以验证我们提出的模型的性能。所有实验结果表明,我们的模型比现有的DRL方法和大多数传统启发式在从随机实例训练到不同问题尺寸的真实世界实例测试的泛化能力上表现更好。

© 2023 日本电气工程师学会。由Wiley Periodicals LLC出版。

1 Introduction

车辆路径问题(VRP)是重要的组合优化问题之一,需要构建一条访问客户的最优路线。对于有容量限制的VRP,一辆具有预定容量的车辆从预设的仓库出发,依次访问空间分布的客户。每当车辆的容量不足以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太极生两鱼

要天天开心哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值