Numpy--布尔索引

#布尔索引:
布尔索引是通过相同数组上的True还是False来进行提取的。提取的条件可以有多个,那么如果有多个,可以使用&来代表且,用来代表或,如果有多个条件,那么每个条件要使用圆括号括起来。
布尔运算也是矢量的,比如以下代码:

a1 = np.arange(0,24).reshape((4,6))
print(a1<10) #会返回一个新的数组,这个数组中的值全部都是bool类型
> [[ True  True  True  True  True  True]
 [ True  True  True  True False False]
 [False False False False False False]
 [False False False False False False]]

这样看上去没有什么用,假如我现在要实现一个需求,要将a1数组中所有小于10的数据全部都提取出来。那么可以使用以下方式实现:

a1 = np.arange(0,24).reshape((4,6))
a2 = a1 < 10
print(a1[a2]) #这样就会在a1中把a2中为True的元素对应的位置的值提取出来

其中布尔运算可以有!=、==、>、<、>=、<=以及&(与)和|(或)。示例代码如下:

a1 = np.arange(0,24).reshape((4,6))
#必须带括号
a2 = a1[(a1 < 5) | (a1 > 10)]
print(a2)

值的替换:

利用索引,也可以做一些值的替换。把满足条件的位置的值替换成其他的值。比如以下代码:

a1 = np.arange(0,24).reshape((4,6))
a1[3] = 0 #将第三行的所有值都替换成0
print(a1)

也可以使用条件索引来实现:

a1 = np.arange(0,24).reshape((4,6))
a1[a1 < 5] = 0 #将小于5的所有值全部都替换成0
print(a1)

还可以使用函数来实现:

where函数

a1 = np.arange(0,24).reshape((4,6))
a2 = np.where(a1 < 10,1,0) #把a1中所有小于10的数全部变成1,其余的变成0
print(a2)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值