模型表示及代价函数

图片加载不了看这

监督式学习的模型表示

训练集的描述:

如:

m 代表训练集中实例的数量

x 代表特征/输入变量

y 输出变量

(x,y) 代表训练集中的实例

(xi,yi) 代表第 i 个观察实例

h 代表学习算法的解决方案或函数也称为假设(hypothesis

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Jm7BIPTq-1605151502349)(https://s1.ax1x.com/2020/11/09/BHuxJJ.png)]

​ 上面为一个监督式学习的工作方式,将我们的训练集数据喂食给这个算法,然后可以给我们返回一个函数h代表学习算法给我们的解决方案,我们可以通过这个函数来根据输入判断输出,就比如根据房子的尺寸估计出房子的价格,h函数相当于一个从x到y的映射,h函数的表达方式有很多种比如最简单的单变量线性表示,抑或多变量一次线性表示来拟合数据,或者多次幂函数来拟合更为复杂的数据。

非监督式学习

非监督式学习与监督式学习的区别主要在于,非监督式学习的训练集数据并不会包含这个数据实例的正确答案,而是依靠非监督式学习算法自己去寻找这些数据的各自特点,一个主要的应用就是应用在聚类算法上面如:

那么聚类算法的作用就是寻找这两波数据的特点,并映射到h函数中,以求能够将两类数据区分出来。

代价函数的介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值