Survey: Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey:

本文详述了深度学习在工业图像异常定位中的应用,包括无监督学习的优势、常用方法(如图像重构、生成模型、深度特征嵌入)以及MVTecAD数据集的作用,同时讨论了关键的评估指标和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章信息
题目:Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey
原文:https://arxiv.org/abs/2207.10298
数据集 :MVTec AD

一、简述
 本文是对工业图像采取深度学习下无监督异常定位方法、数据集选取、评价标准选取等的介绍。首先,要明白现实工业中异常情况是远远少于正常图像的,这就造成异常图像数据实际上是有限的。但是工业中,需要将异常的情况检测出来,这就是异常检测存在的原因。我们对一系列图像数据进行学习,使得机器学习到这些异常图像的特征,获得对图像异常与否的判断和预测能力。其次,无监督学习相比监督学习可以消除对训练样本标注的成本,避免标注偏差。

1.1 异常检测和异常定位的区别
 AD:异常检测,对输入图像进行判断,判断该图像是异常或正常图像(左).
 AL:异常定位,对输入图像的异常情况进行查找定位,提取出图像异常的部位(右).
在这里插入图片描述1.2 图像缺陷分类
  工业上的异常一般分为2类,纹理缺陷和功能缺陷。如MVTec AD数据集中纹理缺陷占大部分,功能缺陷占少部分。下图第一行展示了MVTec AD数据集上的纹理缺陷,第二行展示了MVTec AD数据集上的功能缺陷。纹理缺陷如瓶口裂纹、榛子上的痕迹、木材表面划痕。功能缺陷主要存在MVTec AD晶体管类别数据集中,摆放位置不同会对器件造成影响。
在这里插入图片描述
1.3 常用图像检测术语含义
 由于文有许多异常检测相关的术语,作者对这些术语与异常定位AL进行了区别说明.
图像分割(image segmentation):分割侧重获取图像中特定对象,该对象可能是正常图像,没有缺陷。
图像显著性检测(image saliency detection):优先寻找显著性区域的图像对象,但有些异常在整个图像中并不显著,如功能异常。
图像表面缺陷检测(image surface defect detection):在工业中,AL概念很相近,简单将工业图像的异常定位等同于无监督的像素级缺陷检测。
奇异值检测(novety detection):训练数据不包含异常

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值