一、图像处理基础
1.计算机视觉和机器视觉的区别?
计算机视觉为机器视觉提供理论和算法基础,机器视觉是计算机视觉的工程实现。
灰度图像(Grayscale Image)是一种特殊的图像,其每个像素仅包含亮度信息,不涉及色彩信息。
灰度图像中,每个像素点由一个数值来表示其灰度值(即亮度) 。该数值范围通常与图像的量化位数有关,例如在 8 位灰度图像中,灰度值范围是 0 - 255 ,其中 0 表示纯黑色,255 表示纯白色,中间的数值对应不同程度的灰色。
视觉呈现:灰度图像呈现出从黑到白的不同灰度层次,没有彩色的干扰,常给人一种简洁、直观的视觉感受。
灰度图只包含一个通道的信息,而彩色图通常包含三个通道的信息,灰度图像(gray image)是每个像素只有一个采样颜色的图像 。
2.什么是仿射变换
3.常见的灰度变化有哪些?
(1)图像反转
图像反转(Image Inversion) 是一种简单直观的图像处理操作,属于灰度变换的一种。其核心思想是将图像的灰度值按一定规则进行反向映射,使亮区和暗区互换,从而实现特殊的视觉效果或增强特定细节。
- L 为图像的灰度级总数(如 8 位图像 (L=256 ),灰度范围 0~255);
- ( L-1 ) 代表最大灰度值(如 255)。
(2)对数变换
对数变换是图像处理中一种重要的灰度变换方法,通过对数函数的非线性映射,调整图像的灰度分布,从而实现对图像对比度的增强或压缩。
压缩高灰度,拉伸低灰度
(3)Gamma变换
Gamma变换(伽马校正)是一种非线性灰度变换方法,通过调整图像的亮度响应曲线,使其更符合人眼感知特性或显示设备的物理特性。
人眼对亮度的感知是非线性的(更敏感于暗部细节),而显示器 / 相机的物理响应通常是线性的。Gamma 校正通过调整亮度曲线,使图像在视觉上更自然。
它的核心作用是调整图像的亮度与对比度,使图像的视觉效果更符合人眼的感知特性。
如果你是在做红外-可见光融合实验,可以考虑在融合前或融合后对红外图或融合图进行 gamma 校正,以增强细节或改善显示效果
(4)直方图均衡化
由于图像的对比度不强,所以图像整体上较暗或较亮态(即图像灰度集中在直方图的两端),为了增加对比度,让图像看起来更清楚,所以有了直方图均衡化。
核心是把原始图像较集中的灰度区间变为在全部灰度范围内均匀分布,即非线性拉伸图像灰度。
对比度是指的画面的明暗反差程度。增加对比度,画面中亮的地方会更亮,暗的地方会更暗,明暗反差增强。
30是灰度级数
- 概念:灰度级数表示图像中不同灰度值的个数。在数字化图像中,每个像素的灰度值用一定位数的二进制数来表示。例如,8 位二进制数可以表示 (2^8 = 256) 个不同的数值,那么对应的灰度级数就是 256 ,其灰度值范围通常是 0 - 255 ,其中 0 代表纯黑色,255 代表纯白色,中间数值代表不同程度的灰色。
- 灰度级数越高,图像能够呈现的灰度层次越细腻,细节表现能力越强。例如,在医学影像中,较高的灰度级数可以更清晰地显示人体组织的细微差异,有助于医生进行准确的诊断。而较低的灰度级数可能导致图像细节丢失,出现灰度层次不够丰富、视觉效果粗糙的情况。
二、空间域图像处理
为了在一维信道(如电缆、无线电波)中传输二维图像,需要将二维像素按行优先顺序逐个转换为电信号或光信号。
原理:滤波就是将核与 图像做卷积,得到的卷积结果就是滤波结果。
(1)典型空间域滤波方法
1. 平滑滤波(去噪)
目标:减少图像噪声(如高斯噪声、椒盐噪声),模糊细节。
- 均值滤波(线性):
用邻域像素平均值替代当前像素,弱化噪声的随机波动。- 缺点:过度模糊边缘。
- 高斯滤波(线性):
核权重服从高斯分布,中心像素权重最大,越远权重越小,保留边缘效果优于均值滤波。
高斯滤波器是一种线性滤波器。能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。
- 中值滤波(非线性):
像素邻域内灰度的中值来替换目标像素 ,有效去除椒盐噪声(脉冲噪声),保护边缘。
2. 锐化滤波(边缘增强)
目标:增强像素间的灰度差异,突出边缘和细节。