🚀 手把手教程:从本地 Docker 部署的 Dify 中导出知识库内容(Windows 宿主机)
适用场景:你使用 Docker 在本地部署了 Dify,构建了 QA 知识库,现在想将所有处理好的文本内容导出为 Excel 文件,按原始文档分 Sheet 保存。
系统环境:Windows 宿主机 + Docker 部署 Dify
目标:安全、完整、结构化地导出知识库内容
✅ 前言
Dify 本身暂未提供“一键导出知识库”的功能,尤其是当你需要导出结构化内容(如每篇文档独立保存)时,必须通过直接访问其 PostgreSQL 数据库来实现。
本文记录我亲测可行的完整流程,适用于:
- 使用
docker-compose
部署的 Dify - Windows 系统作为宿主机
- 想导出
document_segments
中的content
内容,并按document_id
分类
🔧 实操步骤详解
① 查看正在运行的容器
docker ps
📌 作用:确认你的数据库容器名称(通常是 docker-db-1
或 dify-postgres-1
),确保服务正在运行。
② 进入 PostgreSQL 数据库
docker exec -it docker-db-1 psql -U postgres -d dify
📌 作用:进入 Dify 使用的 PostgreSQL 数据库交互环境,开始操作数据。
⚠️ 请根据你的实际容器名调整命令。
③ 查看所有知识库(datasets)
SELECT id, name, created_at FROM datasets;
📌 作用:列出所有知识库,找到你要导出的那个,记下它的 id
(如:2f3e82cf-dd2f-49ab-a012-908441f4f7aa
)。
④ 查看数据库表结构
\dt
📌 作用:列出所有表,确认文档相关表为 documents
和 document_segments
(新版 Dify 结构)。
⑤ 再次确认目标 dataset_id
SELECT id, name, created_at FROM datasets;
📌 作用:防止看错,再次核对你要导出的知识库 ID。
⑥ 查询所有文档内容(核心步骤)
SELECT
d.name AS document_name,
ds.content AS content,
ds.position
FROM documents d
JOIN document_segments ds ON d.id = ds.document_id
WHERE d.dataset_id = '2f3e82cf-dd2f-49ab-a012-908441f4f7aa'
AND d.enabled = true
AND d.indexing_status = 'completed'
ORDER BY d.name, ds.position;
📌 作用:
- 关联
documents
和document_segments
表 - 筛出已启用、处理完成的文档
- 按文档名和分段顺序排序
- 获取真正的文本内容(
ds.content
)
⑦ 导出为 CSV 文件
\copy document_segments TO '/tmp/document_segments.xlsx' WITH XLSX HEADER;
📌 作用:将查询结果保存到容器内的 /tmp/document_segments.csv
。
❗ 注意:PostgreSQL 的
\copy
不支持直接导出为.xlsx
,只能导出为.csv
,后续用 Python 转换。
⑧ 退出数据库并复制文件到桌面
\q
docker cp docker-db-1:/tmp/document_segments.csv C:\Users\Colryan\Desktop\document_segments.csv
📌 作用:
\q
退出psql
docker cp
将文件从容器复制到 Windows 桌面
✅ 文件现已在你本地,可放心操作。
⑨ 清理容器内临时文件
docker exec -it docker-db-1 rm /tmp/document_segments.csv
📌 作用:清理 /tmp
目录下的临时文件,保持容器整洁。
📁 后续处理:用 Python 整理数据
1. 转 CSV → XLSX(支持多 Sheet)
使用 Python 脚本将 document_segments.csv
转为 document_segments.xlsx
,并按 document_id
分 Sheet。
import pandas as pd
# 读取 CSV
df = pd.read_csv('document_segments.csv')
df['document_id'] = df['document_id'].astype(str) # 确保 ID 为字符串
# 写入 Excel,每个 document_id 一个 Sheet
with pd.ExcelWriter('document_segments.xlsx', engine='openpyxl') as writer:
for doc_id, group in df.groupby('document_id'):
sheet_name = doc_id[:30].replace('/', '_').replace('\\', '_').replace('?', '_')
group.to_excel(writer, sheet_name=sheet_name, index=False)
print("✅ 导出完成:document_segments.xlsx")
📌 作用:实现“一个文档一个 Sheet”的结构化输出。
✅ 总结:完整流程图
Dify 数据库
↓ (psql 查询 + \copy)
容器内 /tmp/document_segments.csv
↓ (docker cp)
Windows 桌面 document_segments.csv
↓ (Python 脚本)
document_segments.xlsx(多 Sheet)
↓
可用于 RAG 构建、人工审核、归档备份
💡 小贴士
- 编码问题:CSV 默认 UTF-8,用 Excel 打开时选择“65001: UTF-8”编码
- Sheet 名限制:Excel 不允许
/ \ ? * : [ ]
,脚本中已自动替换 - 自动化建议:可将整个流程写成
.bat
+ Python 脚本,一键导出
🙌 结语
这套方法亲测有效,适用于所有本地 Docker 部署的 Dify 用户。虽然步骤略多,但每一步都清晰可控,避免误删或导出错误内容。
如果你也在做 RAG 知识库管理、安全规范整理、或 AI 训练数据准备,这套流程值得收藏!
📌 欢迎点赞、收藏、转发,帮助更多 Dify 用户解决知识库导出难题!