CCF-BDCI大数据与计算智能大赛TOP4-京东生鲜

2023 CCF 大数据与计算智能大赛《线上线下全场景生鲜超市库存履约一体化决策》top4南山论剑

链接: CCFBDCI-线上线下全场景生鲜超市库存履约一体化决策

摘要

在中国拥有万亿市场规模的生鲜商品,已成为全场景多业态零售商的引流明星。生鲜商品货架期短、易损耗、价格变化频繁,同时多业态销售又增加了新的不确定性。
全场景多业态生鲜超市订单有线上和线下两个来源,门店备货也采用前场(超市门店)+后场(门店仓库)的布局。门店日常经营中,每天经常面临两个重要决策:1)总备货量:根据商品销售历史和最新信息,预估商品未来销量,决定每日备货总量。2)前后场库存分配:根据线上线下订单分布来决策商品库存在前后场的分配。前后场库存分配不好会增加履约成本,降低履约效率。
该任务的难点主要体现在两个方面。1)多目标时序预测:有12家门店,各门店有1000种商品,结合起来就需要预测12000个目标。2)多步长时序预测:要预测8月31号后未来两周内每日的线上线下备货数量。
多目标方面,对于12000个目标将每个目标细分为一个具体的样本,基于历史数据构造特征,预测第i天的线上线下销量。多步长方面,分别将后14天的线上线下销量作为标签进行回归预测,尝试了滑动窗口、14个单步长预测、多步长预测等方案。为了保证训练数据的质量,需要按时间截取历史数据并进行缺失值填充。充分利用官方提供的5类数据集,结合实际业务提取商品类别、销售状况、售价、折扣和天气状况的组合特征。分别尝试xgb、lgbm、catboost等机器学习模型,lstm、多头注意力机制、transformer等深度学习模型。并按照不同的数据构造方法,不同的数据划分方法,构造数据集训练模型。结合不同的特征组合、模型类型和训练方案,尽可能实现模型融合的差异化。
关键词
电商零售、多目标时序预测、多步长时序预测

1 数据预处理

1.1 数据整合

整合商品类别、销售状况、售价、折扣和天气状况5类数据集。因为预测指标是销量,所

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值