一、本文介绍
本文介绍将 FEFM模块引入 YOLOv11 目标检测框架,可有效提升模型在复杂场景下的检测精度。FEFM 通过强化跨模态(如 RGB 与 NIR)间的共性特征并补充差异性高频纹理信息,使得特征表达更加丰富和鲁棒,尤其在低光、遮挡或噪声环境中表现更优。相比传统特征融合方法,FEFM 能帮助 YOLOv11 更精准地识别目标边缘与细节,从而提升小目标检测能力和整体检测性能。具体怎么使用请看全文!
专栏改进目录:YOLOv11改进专栏包含卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、C2PSA/C3k2二次创新改进、全网独家创新等创新点改进
全新YOLOv11-发论文改进专栏链接:全新YOLOv11创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
目录
1.首先在ultralytics/nn/newsAddmodules创建一个.py文件