【RT-DETR涨点改进】全网独家创新篇、小目标检测专属 | AAAI2025 | 引入HS-FPN中的HFP和SDP创新点,从频域增强小目标特征,淘汰FPN进行升级,助力RT-DETR有效涨点

  一、本文介绍

本文给大家介绍HFP和SDP创新点优化RT-DETR模型!HS-FPN通过高频感知模块(HFP)从频域增强小目标特征,并利用空间依赖感知模块(SDP)捕获相邻像素间的空间依赖。实验表明,HS-FPN在AI-TOD和DOT Amini10等小目标检测数据集上,相较于FPN显著提升了检测性能,展现出竞争优势。

含多种rtdetr基准创新改进点助力高效涨点!

🔥RT-DETR创新改进目录:新RT-DETR 有效涨点改进目录 | 包含各种卷积、主干改进、各种注意力机制、Neck特征融合改进、损失函数、AIFI创新改进、独家创新、小目标检测、特殊场景检测等最全大论文及小论文必备创新改进点

🔥全新RT-DETR创新改进专栏地址:最全RT-DETR创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

本文目录

一、本文介绍

二、HFP和SDP模块介绍

HFP和SDP网络结构图:

HFP和SDP的作用:

三、HFP和SDP核心代码

四、手把手教你添加模块和修改task.py文件

1.首先在ultralytics/nn/newsAddmodules创建一个.py文件

2.在ultralytics/nn/newsAddmodules/__init__.py中引用

3.修改task.py文件

五、创建涨点yaml文件

🚀参考版本1: rtdetr-l-HSP-SDP.yaml

🚀参考版本 2: rtdetr-r18-HSP-SDP.yaml

### 小目标检测中的RT-DETR改进方法 对于小目标检测而言,模型需要具备更高的分辨率敏感度以及更强的特征提取能力。针对这一需求,在 RT-DETR引入了多尺度特征融合技术来增强网络对不同尺寸物体的理解[^1]。 为了进一步提升性能,还采用了自适应锚框机制,该机制能够动态调整候选区域大小以更好地匹配实际场景中小目标的比例关系[^2]。 此外,通过增加数据集多样性并应用图像增广策略可以有效改善训练效果。具体措施包括但不限于随机裁剪、颜色抖动等操作,这些手段有助于提高模型泛化能力鲁棒性[^3]。 最后值得注意的是路径聚合网络(PANet)的应用也起到了重要作用。PANet 结构使得低层语义信息得以充分利用并与高层抽象表示相结合,从而显著增强检测器捕捉细粒度细节的能力[^4]。 ```python import torch.nn as nn class MultiScaleFeatureFusion(nn.Module): def __init__(self, in_channels_list, out_channel): super(MultiScaleFeatureFusion, self).__init__() # 定义多尺度特征融合模块的具体实现 def adaptive_anchor_generation(image_size, base_anchors): """ 动态生成适合当前输入图片尺寸的锚框 """ def data_augmentation_strategy(): """ 实现一系列用于扩充数据集多样性的变换函数 """ class PathAggregationNetwork(nn.Module): def __init__(self, bottom_up_layers): super(PathAggregationNetwork, self).__init__() # 构建路径聚合网络结构 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值