s、x、t -learner

因缺少博客内容,无法提炼关键信息形成摘要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

### 因果推断中的S-Learner模型 在因果推断领域,S-Learner 是一种用于估计条件平均处理效果 (CATE) 的方法。该方法通过构建一个单一的学习器并将治疗变量作为输入特征的一部分来预测结果。这种方式适用于大多数标准的监督学习框架。 下面是一个简单的 Python 实现例子,展示了如何使用 `scikit-learn` 库创建并训练 S-Learner 模型: ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor def create_s_learner(dataframe, treatment_column='treatment', outcome_column='outcome'): """ 创建一个基于随机森林回归器的S-Learner模型 参数: dataframe (pd.DataFrame): 包含协变量、处理结果列的数据框. treatment_column (str): 处理变量所在的列名,默认为 'treatment'. outcome_column (str): 结果变量所在的列名,默认为 'outcome'. 返回: model: 训练好的S-Learner模型对象. """ # 准备数据集 features = [col for col in dataframe.columns if col not in [treatment_column, outcome_column]] X_train, X_test, y_train, y_test, t_train, _ = \ train_test_split( dataframe[features], dataframe[outcome_column], dataframe[treatment_column], test_size=0.2, random_state=42) # 将处理变量加入到特征集中 X_train_with_treat = X_train.copy() X_train_with_treat['is_treated'] = t_train.values # 初始化并训练模型 s_learner_model = RandomForestRegressor(n_estimators=100) s_learner_model.fit(X_train_with_treat, y_train) return s_learner_model # 假设有一个名为df的数据帧包含了所有的观测数据 s_learner = create_s_learner(df) ``` 此代码片段定义了一个函数 `create_s_learner()` ,它接收一个 Pandas 数据帧以及指定哪些列为处理变量结果变量。接着将处理状态编码为二进制形式,并将其与其他协变量一起送入单个机器学习模型中进行联合建模[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天的学习日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值