阿里巴巴Java开发编码规范
编程基础
- 命名规范:类名、方法名、变量名均要求采用驼峰命名法,常量名则需全部大写并用下划线分隔。
- 注释规范:类、方法、字段的注释必须使用 Javadoc 规范,必要时应该添加注解。
- 异常处理:在捕获异常时应该尽可能明确,避免使用空的 catch 代码块而导致程序无法定位错误。
- 日志规范:在使用日志框架时应该按照既定的规范进行,以便于维护和排错。
代码质量
- 代码风格:严格遵守阿里巴巴的代码规范,保持代码简洁易懂,同时考虑到可扩展性和可维护性。
- 安全性:对于涉及到业务安全的代码应该格外谨慎,防止攻击和数据泄露。
Mysql数据库
1. 表达是与否概念的字段,必须使用is_xxx的方式命名,数据类型是unsigned tinyint(1表示是,0表示否)
2. 表名、字段名必须使用小写字母或数字,禁止出现数字开头,禁止两个下划线中间只出现数字。数据库字段名的修改代价很大,因为无法进行预发布,所以字段名称需要慎重考虑
3. 表名不使用复数名词
4. 禁用保留字,如desc、range、match、delayed等,请参考MySQL官方保留字
5. 主键索引名为pk_字段名;唯一索引名为uk_字段名;普通索引名则为idx_字段名
6. 小数类型为decimal,禁止使用float和double
7. 如果存储的字符串长度几乎相等,使用char定长字符串类型
8. varchar是可变长字符串,不预先分配存储空间,长度不要超过5000,如果存储长度大于此值,定义字段类型为text,独立出来一张表,用主键来对应,避免影响其它字段索引效率
9. 表必备三字段:id, create_time, update_time
10. 表的命名最好是遵循“业务名称_表的作用”
11. 库名与应用名称尽量一致
12. 字段允许适当冗余,以提高查询性能,但必须考虑数据一致。冗余字段应遵循: 1) 不是频繁修改的字段。 2) 不是varchar超长字段,更不能是text字段。3) 不是唯一索引的字段。
13. 如果修改字段含义或对字段表示的状态追加时,需要及时更新字段注释
14. 单表行数超过500万行或者单表容量超过2GB,才推荐进行分库分表
15. 合适的字符存储长度,不但节约数据库表空间、节约索引存储,更重要的是提升检索速度
1. 业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引
2. 超过三个表禁止join。需要join的字段,数据类型必须绝对一致;多表关联查询时,保证被关联的字段需要有索引
3. 在varchar字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度即可
4. 页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决
5. 如果有order by的场景,请注意利用索引的有序性。order by 最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现file_sort的情况,影响查询性能
6. 利用覆盖索引来进行查询操作,避免回表
7. 利用延迟关联或者子查询优化超多分页场景
8. SQL性能优化的目标:至少要达到 range 级别,要求是ref级别,如果可以是consts最好
9. 建组合索引的时候,区分度最高的在最左边
10. 防止因字段类型不同造成的隐式转换,导致索引失效
11. 创建索引时避免有如下极端误解: 1) 宁滥勿缺。认为一个查询就需要建一个索引。 2) 宁缺勿滥。认为索引会消耗空间、严重拖慢记录的更新以及行的新增速度。 3) 抵制惟一索引。认为业务的惟一性一律需要在应用层通过“先查后插”方式解决。
1. 不要使用count(列名)或count(常量)来替代count(*),count(*)是SQL92定义的标准统计行数的语法,跟数据库无关,跟NULL和非NULL无关
2. count(distinct col) 计算该列除NULL之外的不重复行数,注意 count(distinct col1, col2) 如果其中一列全为NULL,那么即使另一列有不同的值,也返回为0
3. 当某一列的值全是NULL时,count(col)的返回结果为0,但sum(col)的返回结果为NULL,因此使用sum()时需注意NPE问题
4. 使用ISNULL()来判断是否为NULL值
5. 代码中写分页查询逻辑时,若count为0应直接返回,避免执行后面的分页语句
6. 不得使用外键与级联,一切外键概念必须在应用层解决
7. 禁止使用存储过程,存储过程难以调试和扩展,更没有移植性
8. 数据订正(特别是删除、修改记录操作)时,要先select,避免出现误删除,确认无误才能执行更新语句
9. in操作能避免则避免,若实在避免不了,需要仔细评估in后边的集合元素数量,控制在1000个之内
10. 如果有国际化需要,所有的字符存储与表示,均以utf-8编码,注意字符统计函数的区别
11. TRUNCATE TABLE 比 DELETE 速度快,且使用的系统和事务日志资源少,但TRUNCATE无事务且不触发trigger,有可能造成事故,故不建议在开发代码中使用此语句
1. 在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明
2. POJO类的布尔属性不能加is,而数据库字段必须加is_,要求在resultMap中进行字段与属性之间的映射
3. 不要用resultClass当返回参数,即使所有类属性名与数据库字段一一对应,也需要定义;反过来,每一个表也必然有一个POJO类与之对应
4. sql.xml配置参数使用:#{},#param# 不要使用${} 此种方式容易出现SQL注入
5. iBATIS自带的queryForList(String statementName,int start,int size)不推荐使用
6. 不允许直接拿HashMap与Hashtable作为查询结果集的输出
7. 更新数据表记录时,必须同时更新记录对应的gmt_modified字段值为当前时间
8. 不要写一个大而全的数据更新接口。传入为POJO类,不管是不是自己的目标更新字段,都进行update table set c1=value1,c2=value2,c3=value3; 这是不对的。执行SQL时,不要更新无改动的字段,一是易出错;二是效率低;三是增加binlog存储
9. @Transactional事务不要滥用。事务会影响数据库的QPS,另外使用事务的地方需要考虑各方面的回滚方案,包括缓存回滚、搜索引擎回滚、消息补偿、统计修正等
10. <isEqual>中的compareValue是与属性值对比的常量,一般是数字,表示相等时带上此条件;<isNotEmpty>表示
工程管理
- 构建工具:使用 Maven 或 Gradle 进行项目构建和管理,同时需要配置好相关插件和依赖。
- 版本控制:使用 Git 进行版本控制,遵循分支管理和代码 review 的流程。
- 单元测试:编写单元测试并实现自动化测试,确保代码可靠性和质量。
Spring Boot 后端编码注意事项
数据库访问
- 数据库连接池:尽量使用开源的高性能数据库连接池,如 HikariCP。
- SQL 防注入:对于动态生成的 SQL 语句,应该采用 PreparedStatement 或参数化查询的方式,避免 SQL 注入攻击。
- 数据库事务:在进行需要保证数据一致性的操作时,需要使用数据库事务机制,保证操作的原子性、隔离性、一致性、持久性。
接口设计
- RESTful 风格:采用符合 RESTful 风格的 API 接口设计,遵循统一的资源定位、HTTP 动词、状态码等规范。
- 请求参数校验:对于接口的请求参数应该进行必要的校验,避免恶意攻击和非法输入。
- 错误处理:对于接口的异常情况应该进行统一的错误处理,返回合适的错误码和错误消息。
缓存管理
- 缓存框架:选择适合自己项目的缓存框架,并结合项目的业务场景进行配置和使用。
- 缓存更新:对于缓存数据的更新,应该保证缓存与数据库的一致性,避免出现脏数据。
日志管理
- 日志框架:选择适合自己项目的日志框架,并结合项目的业务场景进行配置和使用。
- 日志级别:采用适当的日志级别,对于不同的场景进行优化配置。
- 日志输出:对于敏感信息如用户密码等应该谨慎输出,确保安全性。