保姆式训练yolov5教程(有服务器版)

本文介绍了如何在Windows或Linux服务器上,特别是Ubuntu系统中,通过Anaconda创建虚拟环境并安装CUDA和cudnn,以便部署深度学习框架Yolov5。步骤包括安装Anaconda、创建虚拟环境、克隆Yolov5仓库、安装依赖库以及数据标注的相关准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

软件准备

  • windows+linux(服务器)
  • CUDA+cudnn
  • anaconda

开始准备

  1.  在服务器的ubuntu安装anaconda(搜一下教程,csdn和知乎有很多)
  2.  新建anaconda下的虚拟环境
    conda create -n your_env_name python=x.x   
    # 例如 
    conda create -n yolov5 python=3.9
    # 这里因为yolov5-7.0要求python版本要大于3.8所以建议安装3.9+的版本  

    虚拟环境新建成功后,会显示:

  3. 下载yolov5源代码

    这里推荐用git来clone仓库中的代码,如果没有git而且不会下载的话,那就用windows系统下载ZIP然后上传到服务器中。
  4. 安装yolov5的配套库

    1. ls --展示当前文件夹下都有什么文件

    2. cd--切换文件夹

      cd [path_to_yolov5]
      # 这里要切换到yolov5具有requirements.txt的那个文件夹下
    3. 安装第三方库

      pip install -r requirements.txt 

数据标注

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值