【数据分析与挖掘】期末复习笔记(不挂科)

本文是关于数据挖掘与分析的期末复习笔记,涵盖了数据挖掘概念、数据预处理、分类、聚类和关联分析等内容。介绍了数据、信息、知识的区别,强调了数据挖掘在大量数据中发现知识的重要性。还详细讲解了数据的统计描述、降维方法、相似性度量以及数据预处理的技巧,如数据清洗、数据集成、相关性分析和数据规约。此外,文中还讨论了分类方法,如朴素贝叶斯和决策树,并对聚类方法进行了介绍。最后,简述了回归分析和关联规则挖掘的基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 数据挖掘概论

1.1 参考资料

在这里插入图片描述
视频资料:魏伟一老师;MOOC官网,国防科大:丁兆云老师,北理:嵩天老师

1.2 简介

  • 知识是人类对客观世界的观察和了解,是人类对客观世界是什么、为什么、应该怎么做的认知,知识推动人类的进步和发展。人类所作出的正确判断和决策,以及采取正确的行动都是基于智慧和知识。
  • 数据是反映客观事物的数字、词语、声音和图像等,是可以进行计算加工的“原料”。数据是对客观事物的数量、属性、位置及其相互关系的抽象表示,适合于保存、传递和处理。

数据挖掘(Data Mining)是人工智能和数据库领域研究的热点问题,是指从大量有噪声的、不完全的、模糊和随机的数据中,提取出隐含在其中的、事先不知道但具有潜在利用价值的信息的过程。

这个定义包括几层含义:数据必须是真实的、大量的并且含有噪声的;发现的是用户感兴趣的可以接受、理解和运用的知识;仅支持特定的问题,并不要求放之四海而皆准的知识。

与数据挖掘的含义类似的还有一些术语如从数据中心挖掘知识、知识提取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chaser&upper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值