自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1331)
  • 收藏
  • 关注

原创 DeepSeek 入门到精通!(清华大学版)

今天给大家推荐一份清华 DeepSeek 使用手册,真的好好用~~清华大学团队出品的 DeepSeek 学习手册,深入解析国产开源 AI DeepSeek 的强大功能,让你从入门到精通,轻松掌握 AI 高效玩法!真的太强了!完整报告104页,文章长度有限无法完整展示,完整资料已经打包放到了网盘,需要的同学自取我的DeepSeek部署资料已打包好(自取↓)但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!❗️为什么你必须了解大模型?

2025-02-10 16:27:46 3296

原创 保姆级实战教程:安装部署私有化大模型,并投喂数据

想要部署属于自己的大模型,会不会很困难?其实不是的,现在是越来越简单。潘哥今天就做一个简单的示范,让大家都能轻松搞定在自己的电脑哦上,本地化部署并运行私有化大模型,并且为我们自己的大模型投喂数据。这样,就可以建立自己的数据仓库,没错,就可以定制垂直行业或细分领域的私有化大模型了。酷~~~首先,我们会用到Ollama,功能是运行大模型。Ollama是一款LLM也就是大型语言模型服务工具,可以极大简化在本地运行大语言模型,极大降低了使用大语言模型的门槛,而且是开源的哦。

2025-01-28 07:00:00 7230

原创 国产AI大模型「医疗十大应用场景」案例盘点,推动医疗健康领域智能升级

人工智能技术的浪潮正席卷全球,AI大模型以其卓越的数据处理能力和深度学习能力,正在成为医疗健康领域变革的关键力量。本文将深入探讨AI大模型在医疗十大场景中的创新实践,展示其提升医疗服务效率、赋能临床决策、推动行业智能化转型的广阔前景。基于海量医疗数据,辅助临床诊断决策AI大模型通过分析海量医疗数据,能够辅助医生进行更准确的诊断。例如,百度灵医大模型利用其强大的数据处理能力,通过API或插件嵌入的方式,在200多家医疗机构中展开应用,显著提升了诊断的准确性和效率。

2024-12-27 11:24:15 6654

原创 七款国产AI大模型:Kimi,智谱清言,通义千问,文心一言,豆包,天工AI,讯飞,各自的优缺点是什么?

优点:Kimi这货,免费还能多平台支持,不光能实时联网,处理长文本也不带喘的,简直就是程序员的贴心小棉袄啊。缺点:不过呢,这家伙在特定领域翻译上就有点儿不太行,有时候还会抽风宕机,咱也不知道它为啥这么脆弱。优点:智谱清言是清华系的,不光会码代码,还能画图表,简直就是学霸中的学霸。尤其是它的多模态处理和图片理解能力,真心厉害。缺点:不过,别太指望它啥都懂,遇到特别复杂或者前沿的东西,它有时候也会掉链子。优点:阿里云的招牌产品,超大规模,能聊会说,还能处理多语言,厉害得不得了。

2024-12-12 16:24:48 7282

原创 什么是算法工程师?算法工程师有前景吗?

什么是算法工程师?算法工程师说目前最炙手可热的岗位。虽然算法工程师一直被频频提及,但是许多人对这个岗位的了解还知之甚少。那么算法工程师究竟是做什么的?前景怎么样呢?下面我们来一起解开这个高薪技术岗位的神秘面纱!

2023-10-02 08:15:00 3096

原创 【值得收藏】图神经网络完全指南:从图拉普拉斯到图卷积的核心原理

摘要:本文系统阐述了图神经网络(GNN)的理论基础,重点介绍了图拉普拉斯矩阵的特征分解及其物理意义,包括特征向量反映节点相关性、特征值表示图频率。详细解释了图傅里叶变换的概念及其与经典傅里叶变换的异同。在卷积操作部分,阐明了谱域卷积的原理和实现方法,提出通过多项式逼近(特别是切比雪夫多项式)来降低计算复杂度,并分析了其优势。最后总结了图神经网络通过聚合邻居信息和组合自身特征来更新节点表征的基本框架。全文为理解GNN的数学基础提供了系统性的理论支持。

2025-09-13 22:00:00 576

原创 【收藏必备】破解RAG评测困境:DOUBLE-BENCH多语言多模态多跳查询实战全解析

本文介绍了DOUBLE-BENCH,迄今最大规模多语言多模态多跳查询的文档RAG评测基准,针对现有评测不足进行了改进。通过5168条人工校验查询,对9个embedding模型、4个MLLM和4个端到端框架评测,发现检索仍是最大瓶颈,模型普遍"过度自信"地产生幻觉。文章还提供了从Agent到Flow Agent的实操指南。

2025-09-13 20:30:00 551

原创 【干货收藏】RAG系统成败关键:22种分块策略详解,小白也能掌握

本文系统解析了RAG系统的22种分块策略,从基础方法(如按换行符、定长分块)到高级技术(如语义分块、多模态分块),针对不同数据类型和应用场景提供定制化解决方案。文章强调合理分块对提升检索精度、避免模型"幻觉"的关键作用,并分享了配套学习资源,帮助开发者高效构建RAG系统。

2025-09-13 19:45:00 419

原创 从入门到精通:构建AI Agent的6大原则(值得收藏的技术指南)

构建高效AI Agent的六大核心原则:明确角色定位、专注特定任务、定制必要工具、多智能体协同、设置行为约束和建立记忆机制。这些原则使AI Agent更可靠、智能且实用,包括通过角色定义提升专业性、任务聚焦减少幻觉、工具精简优化效率、协作机制增强决策、约束保障可靠性和记忆系统实现持续改进。遵循这些原则可显著提升AI Agent的性能表现。

2025-09-12 22:30:00 1419

原创 收藏必学:大模型核心组件多头自注意力机制详解与代码实现

摘要: 文章探讨了多头自注意力机制的两种实现方式:1)堆叠多个单头注意力模块,通过串行处理各头输出后拼接;2)通过权重分割在单个类中实现并行计算。后者利用张量重塑和转置操作,将输入分割成多个头,高效计算注意力权重并合并结果。两种方法都能使模型同时关注不同位置和表示子空间的信息,是Transformer架构的核心组件。文中还提供了具体的PyTorch实现代码,展示了如何通过线性变换和维度操作实现多头注意力机制。

2025-09-12 21:30:00 926

原创 Transformer架构精讲:从零开始理解大模型核心原理(建议收藏)

本文深入浅出地解析了Transformer架构的核心原理,重点讲解了13个关键步骤:从分词、词元嵌入到位置编码,再到编码器的多头自注意力机制和位置感知前馈神经网络。通过26个token的实例,详细说明了512维向量空间的转换过程,并对比了编码器与解码器的差异。文章特别强调了多头注意力机制的计算公式及其信息聚合功能,以及解码器中掩码机制的特殊处理方式。最后指出编码器输出向量用于分析,解码器输出概率用于生成的本质区别,为理解大语言模型提供了完整的技术框架。

2025-09-12 20:30:00 831

原创 大模型Agent设计模式详解:反思模式(Reflection) | 从入门到精通,值得收藏

AI反思模式:智能进化的关键机制 本文系统阐述了AI Agent中的反思模式(Reflection),揭示了其通过自我评估、迭代优化提升任务执行能力的核心机制。该模式包含生成-评估-优化的闭环流程,在代码生成(准确率提升至95.1%)、文本编辑等场景效果显著。文章对比了Basic Reflection与Reflexion框架的实现差异,分析了其与CoT、ReAct等模式的关系。尽管存在计算成本高、评估设计难等挑战,反思模式仍推动AI从答案生成器向具备自我完善能力的智能体进化,成为多智能体协作系统中的关键设计

2025-09-12 17:52:11 461

原创 RAG技术全景解读:破解大模型知识瓶颈与幻觉难题,开发者进阶必备指南

RAG技术全景解读:破解大模型知识瓶颈与幻觉难题,开发者进阶必备指南

2025-09-12 15:27:10 986

原创 美团面试考点拆解:LLM 大模型常见问题有哪些?RAG 优化方法一文讲透(小白 / 程序员入门必看)

美团面试考点拆解:LLM 大模型常见问题有哪些?RAG 优化方法一文讲透(小白 / 程序员入门必看)

2025-09-12 15:21:51 856

原创 【深度解析】从入门到精通:提示词与提示词工程全景指南

【深度解析】从入门到精通:提示词与提示词工程全景指南

2025-09-11 15:35:08 1086

原创 实在Agent从入门到实操:零基础也能轻松搭建专属智能体

实在Agent从入门到实操:零基础也能轻松搭建专属智能体

2025-09-11 15:03:42 916

原创 【必收藏】LangChain实战指南:从零开始构建你的AI智能体

LangChain框架实战指南:构建AI智能体的核心技术与应用 LangChain是一个连接大语言模型与现实世界的开源框架,通过Chain、Agent、Tools、Memory和RAG五大核心组件,让开发者能够轻松构建功能强大的AI应用。该框架可连接私人文档、API、数据库等资源,实现智能客服、数据分析等多种场景应用。截至2025年,预计70%的大语言模型应用项目将采用LangChain作为基础架构,显著降低了AI应用开发门槛。本文详细介绍了LangChain的核心概念、应用场景及学习路径,是开发者构建下一

2025-09-10 20:45:00 1009

原创 大模型核心技术:混合专家模型(MoE)详解,值得收藏学习

混合专家模型(MoE)是一种通过门控机制动态选择专家子模型的架构,由专家网络和路由器组成。它可分为稠密型(激活所有专家)和稀疏型(仅激活部分专家)两类。在Transformer架构中,MoE通常替换前馈网络层,每个专家对应一个独立FFN,路由器选择激活概率最高的K个专家进行计算。这种机制能显著提升模型性能,同时保持计算效率。目前MoE已广泛应用于大模型领域,通过专家分工处理不同任务来提升模型表现。

2025-09-10 19:45:00 670

原创 从DeepSeek技术交底看大模型未来:MoE架构与Agentic AI必学指南(值得收藏)

本文深入解析DeepSeek技术交底,揭示MoE架构如何实现万亿参数大模型的高效训练,以及Agentic AI如何推动大模型从被动响应向主动协作转变。文章详解了下一代训练方法、对抗幻觉技术及未来AGI发展路径,为开发者和研究人员提供了大模型技术演进的全景视角和实践指导。

2025-09-10 18:30:00 699

原创 程序员必看!提示词工程:从基础原理到实战应用,一文看懂!

程序员必看!提示词工程:从基础原理到实战应用,一文看懂!

2025-09-10 15:46:35 1163

原创 大模型算法岗面经:腾讯、字节等12家企业实战复盘与核心考点解析

大模型算法岗面经:腾讯、字节等12家企业实战复盘与核心考点解析

2025-09-10 15:33:13 1194

原创 【珍藏必看】从零入门到精通:AI智能体(Agent)完全指南,程序员必学的下一代AI技术

AI智能体(Agent)是具备感知环境、自主决策和独立执行能力的智能系统,能够像人类一样完成完整工作闭环。不同于简单"AI+传统应用",Agent强调无需人工干预的自主行动能力,成为AI发展的下一阶段(Agentic AI)。在智能化建设浪潮下,Agent市场潜力巨大,既包含对海量传统应用的智能化改造,也涵盖创新场景开发。未来三年,智能体技术将深度渗透基础设施、软硬件平台及各类服务领域,成为AI产业化的重要方向。

2025-09-09 19:45:00 622

原创 收藏!WebSailor:解决开源Agent复杂推理难题的新方法,AI开发必学

WebSailor是阿里巴巴通义实验室提出的新型后训练方法,旨在提升开源LLMs和web agent处理复杂信息寻求任务的能力。该方法通过三个关键创新:1)SailorFog-QA高不确定性数据合成技术构建复杂训练数据;2)RFT冷启动奠定基础推理能力;3)DUPO强化学习算法优化多轮推理效率。实验表明,WebSailor-72B在BrowseComp-zh基准测试中达到与顶尖专有agent相当的性能,同时较小规模的WebSailor-7B也显著优于同类开源模型。该方法有效缩小了开源与专有系统间的能力差距,

2025-09-09 18:45:00 1022

原创 多路召回技术详解:大模型RAG架构中的高效信息检索方案

多路召回技术是提升RAG架构检索效率的核心方法,通过并行/串行召回及融合策略(如RRF、精排模型)结合向量与关键词召回优势。该技术显著提高覆盖率与精准率,增强抗噪能力,广泛应用于搜索、推荐等高精度场景。推荐采用BM25+向量召回→RRF初排→Dranker精排的流程,支持灵活调整召回路径和参数优化。随文附赠大模型学习资料包(含路线图/实战项目/必读书籍/面试题),由清华-加州理工双料博士团队研发,助力零基础快速入门AI大模型领域。(149字)

2025-09-08 20:45:00 905

原创 【珍藏必备】多智能体上下文工程:解锁AI协同智慧的钥匙,让多Agent协作效率倍增

文章摘要:本文探讨Multi-Agent Context Engineering(多智能体上下文工程),介绍如何在多个AI代理间构建动态共享的上下文信息以实现高效协作。核心包括全局上下文存储、上下文协议、事件驱动架构和版本控制等组件,通过代码示例展示Agent状态管理和事件发布机制。该系统可解决多智能体协作中的信息孤岛问题,提升任务执行效率和输出一致性,同时支持实时监控和状态快照等功能。

2025-09-08 20:00:00 665

原创 程序员收藏!大模型微调技术全解析:从入门到框架对比

文章摘要:本文系统分析了大模型微调的两种核心策略:全量微调(FFT)与参数高效微调(PEFT)。重点对比了LoRA、Prompt-tuning等PEFT方法的优势与适用场景,并针对不同数据量、资源条件提供了选型建议。同时详细评测了LLaMA-Factory、Unsloth等主流微调框架的特点,为开发者选择适配工具提供参考。文章强调微调技术的核心在于平衡性能与成本,其中LoRA因出色的性价比成为当前主流选择。(149字)

2025-09-08 18:45:00 800

原创 AI大模型时代,为何AI产品经理的职业天花板,反而比传统PM更低?

AI大模型时代,为何AI产品经理的职业天花板,反而比传统PM更低?

2025-09-08 16:30:20 701

原创 【值得收藏】从零开始学提示词工程:AI交互的底层逻辑与技巧(一)

【值得收藏】从零开始学提示词工程:AI交互的底层逻辑与技巧(一)

2025-09-08 16:26:13 981

原创 Dify 工作流实战教程:爬虫抓取公众号文章,搭建企业 AI 知识库

本文介绍了AI知识库构建的关键技术,以教培行业为例,通过Dify平台演示了公众号内容自动抓取、智能处理和存储的完整流程。具体包括:1)创建知识库并获取API密钥;2)集成Firecrawl爬虫服务;3)构建包含URL解析、内容提取、格式转义和API存储的工作流。重点解决了人工整理效率低下的痛点,提供了一套自动化解决方案,支持高质量AI内容生成。文章还附带了大模型学习资料,帮助读者系统掌握相关技术。

2025-09-07 21:00:00 1407

原创 入门 Agentic RAG:从单智能体到多智能体,一篇讲透实践方法

Agentic RAG是将AI智能体与检索增强生成技术结合的前沿方法,通过智能体的自主决策和多步协作能力,显著提升RAG系统的灵活性和智能水平。核心在于利用检索智能体实现规划、适应、工具使用和反思等功能,可分为单智能体和多智能体两种架构模式。单智能体适合简单任务,多智能体则通过专业化分工处理复杂工作流。这种技术突破使RAG系统能够应对更复杂的查询场景,如知识图谱构建和复杂问答,为企业级应用带来更大价值。文章还提供了大模型学习资源,帮助读者掌握这一新兴技术。

2025-09-07 13:30:00 698

原创 报告 | 《全球电商行业AI应用研究报告》(免费下载PDF版本)

报告 | 《全球电商行业AI应用研究报告》(免费下载PDF版本)

2025-09-07 10:45:00 1264

原创 【收藏必备】大模型开发必备工具:11个LLM开源框架全解析,从微调到部署

【收藏必备】大模型开发必备工具:11个LLM开源框架全解析,从微调到部署

2025-09-07 10:00:00 801

原创 LangBot+Dify 实战指南:手把手搭建任意平台智能聊天机器人

本项目通过本地部署Dify、RAGFlow和LangBot三大工具,构建企业级私有智能客服系统。Dify实现智能体编排,RAGFlow负责知识库管理,LangBot作为协议转换网关。系统支持多渠道接入(微信、飞书等),数据完全本地化,保障隐私安全。部署过程包括:1)安装Docker环境;2)配置各组件网络互联;3)调试流水线接口;4)对接外部通讯平台(如钉钉)。最终实现知识秒级更新、业务API调用、多平台统一响应的全链路本地化智能客服解决方案。

2025-09-05 19:43:03 600

原创 小白必看:什么是大模型?大模型综述,看这一篇就够了

小白必看:什么是大模型?大模型综述,看这一篇就够了

2025-09-05 16:10:44 930

原创 2025 大模型人才缺口将达 400 万!Java/C++ 工程师别弃老本行,这样结合 AI 更吃香(附零基础教程)

2025 大模型人才缺口将达 400 万!Java/C++ 工程师别弃老本行,这样结合 AI 更吃香(附零基础教程)

2025-09-05 16:04:44 306

原创 零基础学 RAG:检索增强生成基础入门与核心价值

摘要:RAG(检索增强生成)通过结合大模型与外部数据,解决企业数据安全、训练成本、领域适配等痛点。其架构包含入库、输入、检索和生成模块,支持问答、总结等任务,广泛应用于金融、医疗等领域。目前大模型人才缺口巨大,学习资料包括路线图、实战项目、权威书籍和面试题,适合零基础入门。由清华-加州理工双料博士研发的系统课程,可帮助快速掌握大模型技术,扫描二维码免费领取学习资源。(150字)

2025-09-04 20:45:00 898

原创 大模型面试考点:为什么 Transformer 要用多头注意力机制,而非一个注意力头?

摘要:Transformer采用多头注意力机制而非单头,主要是为了多角度捕捉信息。单头注意力只能关注单一视角(如语法或语义),容易忽略其他重要信息;而多头机制通过多个注意力头并行处理(如分别关注主谓、动宾、位置等关系),最后合并结果,能更全面理解复杂模式。虽然头数增加会提升计算量,但通过合理设置头数(如8-32个)可以平衡效率与性能。多头机制不仅增强模型表达能力,还提高了训练稳定性。

2025-09-04 20:15:00 777

原创 小白都能看懂的Transformer!!

Transformer是2017年提出的革命性神经网络架构,基于自注意力机制彻底改变了自然语言处理领域。其核心创新在于完全摒弃RNN结构,通过并行计算和直接捕捉任意位置依赖关系,解决了RNN存在的两大痛点。Transformer由编码器和解码器组成,核心组件包括输入嵌入、位置编码、自注意力机制、多头注意力、前馈网络等。其中自注意力机制能动态计算序列中所有词之间的关系,而多头注意力则从不同子空间学习信息。该架构已成为GPT、BERT等主流大模型的基础技术,显著提升了机器翻译等任务的表现。

2025-09-04 18:45:00 1144

原创 35 岁程序员别慌!AI 赛道疯狂揽才,抓住风口年薪百万不是梦

35 岁程序员别慌!AI 赛道疯狂揽才,抓住风口年薪百万不是梦

2025-09-04 14:24:15 1018

原创 一文搞懂RAG技术:大模型知识库工作原理,程序员小白必学,强烈建议收藏

一文搞懂RAG技术:大模型知识库工作原理,程序员小白必学,强烈建议收藏

2025-09-04 14:23:59 1105

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除