【实战】基于TensorRT 加速YOLO系列以及其他加速算法实战与对比

本文介绍了如何使用TensorRT对YOLO系列模型进行加速,并提供了精度和速度对比。通过配置CUDA、cuDNN和TensorRT,编译生成YOLOv5s.engine并测试模型,结果显示cpp版TensorRT对YOLOv5s的加速效果显著,比python版快3倍。此外,还提及了Openvino在CPU上的加速效果,并预告了一个目标检测数据标注工具即将开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天cv调包侠尝试了使用TensorRT 做YOLO的加速,先概述我这边实现的速度和精度对比:

精度上对比:

在这里插入图片描述

可以看到,精度上使用TensorRT 精度不掉,反而略微上升了一些些(具体情况未知,还在摸索)

在这里插入图片描述

TensorRT 速度上的对比:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-brzkenlt-1607327705984)(D:\CSDN\pic\TensorRT\1607274607525.png)]

另外值得注意的是,我使用的TensorRT的作者介绍说:YOLOV5 s小模型原本已经很快了,使用python版的tensorRT加速反而慢了一些,使用cpp版快了3倍,如果是使用YOLOV5 X的大模型,加速效果会更明显。

下面开始手把手教学,先大致说说思路:

1:配置cuda cudnn 和TensorRT ,先配置适合你的电脑的cuda cudnn,以及到Nvidia

评论 128
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cv君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值