大家好,我是cv君,大家是否为深度学习算法速度感到困扰?本次cv君倾力分享一个优秀的方法,通过相似度+跟踪方案优化速度问题,并提高了检测、分割算法稳定性,附带代码,一起肝起来吧~
今天给大家全解一下图像相似度算法以及跟踪算法。简单说就是判断俩图片、视频、画面是否相似的算法。
能做什么?
1: 当你老板说你目标检测算法耗时、耗电、耗内存的时候:请务必加上相似度算法!超低能耗、超快速度,适用于部分场景:你的检测算法慢,功耗高时,实际上,并不需要每秒都检测,检测算法ok,那么你前几帧检测,后几十帧跟踪,都行。相似度过小:即画面变化过大后,就重新检测;或者时间过了几秒,重新检测,再跟踪,功耗大大降低。
2: 判断画面是否变化,有人闯入你家,黑暗的时候,蒙面大盗是难以被目标检测、人脸识别的。
3: 相机在预览时,画面是否改变:调焦,物体运动,画面是否被放大缩小,云台是否转动。
4:画面是否稳定。
5:图像之间谁最相似、最不相似。
6:用作超分、去雾、去雨、去摩、图像修复、各种图像调试,以达到与你的GT最相似,用作损失计算。
等等
相似度算法全解
1.余弦相似度计算
把图片表示成一个向量,通过计算向量之间的余弦距离来表征两张图片的相似度。
# -*- coding: utf-8 -*-