【ACWing】777. 字符串乘方

该博客介绍了一种利用KMP算法求解字符串乘方的问题。给定一个字符串s,需要找到最大的整数n,使得存在一个字符串a,满足s等于a的n次方。代码实现中,首先构建了KMP的next数组,然后通过判断s是否能被自身的一个子串整除来确定n的值。输出的时间复杂度为O(l_s)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://www.acwing.com/problem/content/description/779/

给定两个字符串 a a a b b b,我们定义 a × b a×b a×b为他们的连接。例如,如果 a = a b c a=abc a=abc b = d e f b=def b=def,则 a × b = a b c d e f a×b=abcdef a×b=abcdef。如果我们将连接考虑成乘法,一个非负整数的乘方将用一种通常的方式定义: a 0 = " " a^0="" a0=""(空字符串), a n + 1 = a × ( a n ) a^{n+1}=a×(a^n) an+1=a×(an)

输入格式:
输入包含多组测试样例,每组测试样例占一行。每组样例包含一个字符串 s s s s s s的长度不超过 100 100 100。最后的测试样例后面将是一个点号作为一行。

输出格式:
对于每一个 s s s,你需要输出最大的 n n n,使得存在一个字符串 a a a,让 s = a n s=a^n s=an

可以用KMP算法。参考https://blog.csdn.net/qq_46105170/article/details/106184933。代码如下:

#include <iostream>
using namespace std;

const int N = 110;
string s;
int ne[N];

void build_next() {
    for (int i = 0, j = ne[0] = -1; i <= s.size(); ) {
        if (j == -1 || s[i] == s[j]) ne[++i] = ++j;
        else j = ne[j];
    }
}

int main() {
    while (cin >> s, s != ".") {
        build_next();
        int n = s.size(), len = ne[n];
        if (n % (n - len) == 0) printf("%d\n", n / (n - len));
        else puts("1");
    }

    return 0;
}

时空复杂度 O ( l s ) O(l_s) O(ls)

### Python 3.11 中乘方运算符 `**` 的使用方法特性 在 Python 3.11 中,乘方运算符 `**` 是一种用于表示幂运算的二元操作符。其基本语法如下: ```python result = base ** exponent ``` 这里,`base` 表示底数,`exponent` 表示指数,返回的结果是 `base` 提升至 `exponent` 次幂后的值。 #### 运算符优先级 根据运算符优先级的规定[^3],乘方运算符 `**` 的优先级高于加法 (`+`) 减法 (`-`) 等其他常见算术运算符,但在表达式中仍需注意圆括号的作用来调整执行顺序。例如,在以下表达式中: ```python result = 2 + 3 ** 2 ``` 由于乘方运算符具有较高的优先级,因此会先计算 `3 ** 2` (即 9),然后再加上 2,最终结果为 11。 #### 数据类型的兼容性 乘方运算支持多种数据类型组合,包括但不限于整型 (`int`) 浮点型 (`float`)。以下是几个典型例子及其行为说明: 1.两个操作数均为整数时,结果通常也是整数: ```python result = 2 ** 3 # 结果为8 ``` 2. 如果任意一方为浮点数,则结果会被提升为浮点数: ```python result = 2.0 ** 3 # 结果为8.0 result = 2 ** 3.0 # 同样得到8.0 ``` 3. 对于负指数的情况,该运算会产生倒数形式的结果: ```python result = 2 ** -1 # 结果为0.5 ``` 4. 特殊情况下涉及零次幂或者零作为基数的情形需要注意定义域限制: ```python result = 0 ** 0 # 定义为1, 数学上的争议情况在此处遵循惯例处理[^2] result = 5 ** 0 # 总等于1无论基数值为何 ``` #### 高性能场景下的应用扩展 对于更高阶的需求比如大规模科学计算领域内可能遇到的大规模矩阵运算等问题解决办法之一可以考虑引入专门优化过的第三方库如 NumPy 或者 SciPy 来加速此类复杂任务完成效率的同时保持代码简洁易维护的特点;而对于纯粹追求极致速度而不介意额外学习成本的话也可以探索 PARI/GP 库所提供的强大功能集[^5]不过这往往意味着项目依赖增加以及跨平台移植性的潜在挑战等因素需要综合评估后再做决定。 ```python import numpy as np # 利用NumPy实现向量化幂运算 array_result = np.power([2, 3], [3, 2]) print(array_result) # 输出数组[8, 9] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值