
主动学习
文章平均质量分 91
主动学习
Java 第一深情
哎哟,不错哦~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于重要抽样的主动学习不平衡分类方法ALIS
这篇论文讨论了数据分布不平衡对分类器性能造成的影响,并提出了一种新的有效解决方案 - 主动学习框架ALIS。1、数据分布不平衡会影响分类器的学习性能。现有的方法主要集中在过采样少数类或欠采样多数类,但往往,无法有效解决严重的类别不平衡问题。2、论文提出了ALIS框架,它通过交替进行和,使得两种采样策略相互影响和改善。3、,从而大幅提高分类器的性能。传统方法缺点:基于采样的技术一直是通过增加少数类实例(过采样)或减少多数类实例(欠采样)来缓解不平衡问题的一种直接而简单的方法。原创 2024-07-19 17:14:22 · 901 阅读 · 0 评论 -
主动学习综述
主动学习的主要目的是在保证分类器精度不降低的前提下尽量降低人工标注的成本主动学习算法通过迭代方式在原始样例集中挑选可以提升模型性能的样例进行专家标注,并将其补充到已有的训练集中,使被训练的分类器在较低的标注成本下获得较强的泛化能力。原创 2024-07-05 18:36:17 · 931 阅读 · 0 评论