- 博客(5)
- 收藏
- 关注
原创 《Python深度学习》第四章笔记
《Python深度学习》第四章笔记1.机器学习的四个分支2.评估机器学习模型2.1简单的留出验证2.2 K折验证2.3带有打乱数据的重复K折验证3.数据预处理、特征工程、特征学习3.1神经网络的数据预处理3.2特征工程4.降低过拟合以及将泛化能力最大化4.1减小网络大小4.2添加权重正则化4.3添加 dropout 正则化这里将介绍一种可用于解决任何机器学习问题的通用模板。这一模板将下面说到的概念串在一起:问题定义、评估、特征工程和解决过拟合。定义问题,收集数据集:你的输入数据是什么?你要预测什么?你
2021-11-16 23:56:17
672
1
原创 《Python深度学习》第三章笔记
神经网络入门神经网络的核心组件层模型损失函数与优化器神经网络解决基本的分类问题与回归问题二分类问题(电影评论分类)准备数据构建网络验证多分类问题(新闻分类)准备数据构建网络验证重新训练模型回归问题(预测房价)神经网络的核心组件层,多个层组合成网络(模型)。输入数据和相应的目标。损失函数,用于学习的反馈信号。优化器,决定学习过程如何进行。多个层链接在一起组成网络,将输入数据映射为预测值。然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预测值与预期结果的匹配程度,优化器使用这个损
2021-11-10 00:44:59
839
原创 《Python深度学习》第二章笔记
《Python深度学习》第二章笔记1.第一个神经网络示例2.张量与张量运算张量(输入网络的数据存储对象)张量运算(层的组成要素)逐元素运算广播张量点积张量变形3.神经网络如何通过反向传播与梯度下降进行学习随机梯度下降链式求导:反向传播算法1.第一个神经网络示例我们来看一个具体的神经网络示例,使用Python的Keras库来学习手写数字分类。这里要解决的问题是,将手写数字的灰度图像(28像素x28像素)划分到10个类别中(0~9)。我们将使用MNIST数据集(MNIST数据集预先加载在Keras库中,包
2021-11-09 00:23:08
4611
2
原创 《Python深度学习》第一章笔记
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
2021-11-07 23:40:19
2066
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人