- [[pyfolio]]
- [[Annual Return]]
- 年化收益率:指把当前的收益率换算成年收益率来计算。
- [[Cumulative Return]]
- 累计收益率:策略开始到结束,总资产的变化率
-累计收益率=终值−初始值初始值累计收益率 = \frac{终值 - 初始值}{初始值} 累计收益率=初始值终值−初始值- [[Annual Volatility]] - 年化波动率:衡量股票的价格在一段时间内的变化。是大幅波动还是较为稳定的到达最终价格。
-每日波动率=今天的价格−昨天的价格昨天的价格每日波动率 = \frac{今天的价格 - 昨天的价格}{昨天的价格}每日波动率=昨天的价格今天的价格−昨天的价格 -年化波动率=每日波动率标准差∗252年化波动率 = \sqrt{每日波动率标准差 * 252}年化波动率=每日波动率标准差∗252- [[Sharpe Ratio]] - 夏普比率:衡量单位风险下投资组合获得的超额利润。夏普比率越大投资组合越优。
-夏普比率=期望收益率−无风险收益率期望收益率标准差夏普比率 = \frac{期望收益率 - 无风险收益率}{期望收益率标准差}夏普比率=期望收益率标准差期望收益率−无风险收益率- [[Calmar比率]] - 卡尔玛比率:计算最大回撤下的投资回报额。衡量在风险调整基础上计算投资的效率。高比率表明投资回报没有大幅缩水的风险,较低的比率表明回撤的风险较大。
-卡尔玛比率=投资组合收益率−无风险收益率之前的最大回撤卡尔玛比率 = \frac{投资组合收益率 - 无风险收益率}{之前的最大回撤}卡尔玛比率=之前的最大回撤投资组合收益率−无风险收益率
- 累计收益率:策略开始到结束,总资产的变化率
- Stability - [[Stability of TimeSeries]]
- 时间序列的稳定性:衡量了对于累计收益的线性回归模型的[[R方]]值。
- R方:衡量的是预测值对于真值的拟合好坏程度。
-R2=1−∑(yi^−yi)2∑(yi−yˉ)2R^2 = 1 - \frac{\sum_(\hat{y_i} - y_i)^2}{\sum_(y_i - \bar{y})^2}R2=1−∑(yi−yˉ)2∑(yi^−yi)2 - R方=1:最理想情况,所有预测值等于真值
- R方=0:可能所有预测值都等于y的平均值
- R方<0:模型预测能力差,比简单预测所有y值等于平均值的效果还差。
- 注意:R方并不是某个数的平方,因此可以为负数
- [[Max Drawdown]]
- 最大回撤:投资组合期间发生的最大损失值。
- [[Omega比率]]
- 经典的投资组合理论建立在均值-方差基础上,并且假设收益率服从正态分布。Omega比率考虑了收益率的整个分布信息,因此包括了所有高阶矩的信息。
-Ω(r)≈∫r∞(1−F(x))dx∫−∞rF(x)dx\Omega(r) \approx \frac{\int_{r}^{\infty} {(1-F(x))dx}}{\int_{-\infty}^{r} {F(x)dx}} Ω(r)≈∫−∞rF(x)dx∫r∞(1−F(x))dx - 其中r为一个参数,指定的临界收益率;F(x)为收益率的累计分布函数。- 上部分为上偏矩,下部分为下偏矩。
- 比率大于1,指上半部分大于下半部分,视为收益;反之视为损失。
- 经典的投资组合理论建立在均值-方差基础上,并且假设收益率服从正态分布。Omega比率考虑了收益率的整个分布信息,因此包括了所有高阶矩的信息。
- [[Sortino Ratio]]
- 索提诺比率:是夏普比率的变体。通过资产收益率与[[下行偏差]]的比值,在衡量负面的波动对收益的影响。
-索提诺比率=预期收益率−无风险利率下行偏差索提诺比率 = \frac{预期收益率 - 无风险利率}{下行偏差}索提诺比率=下行偏差预期收益率−无风险利率
- 索提诺比率:是夏普比率的变体。通过资产收益率与[[下行偏差]]的比值,在衡量负面的波动对收益的影响。
- 该比率越大越好,说明在承担每单位的不良风险中获得的回报有多少。
- [[Skew]]
- 偏度
- 倾斜为正值,表示长尾在该收益分布的右边;
- 倾斜为负值,表示长尾在该收益分布的左边。
- [[Kurtosis]]
- 峰度
- 峰度越高,对应更频繁的极端偏差。
- 正态分布的峰度为3
- [[tail Ratio]]
- 尾部的占比:衡量中间部分(右尾和左尾中间部分,比如假设置信水平为95%)的占比。
- [[Daily Value at Risk]]
- 每日在险价值:是一种新型风险管理的统计数据,用于预测每日最大可能损失。
- 由三个变量组成:周期–每日、置信水平–并没有设定,和可能损失的大小。
- [[Gross Leverage]]
- 总杠杆率