今天我们来学习一个在并发环境下经常遇到的问题。因为我们日常开发中,几乎所有业务都运行在并发环境中,数据库操作也不例外。
当我们启用了 MySQL MGR(MySQL Group Replication)集群 时,如何在这种环境下保证读取或写入的数据是最新的,就显得非常关键了。如果控制不当,就可能会产生严重的读写不一致问题。
本文将从 MGR 的基本概念出发,逐步深入其复制原理,并详细介绍如何通过参数配置解决读写一致性问题。
一、MGR 集群基础回顾:是什么、为什么
我们先来回顾一下什么是 MGR 集群。
MySQL Group Replication(MGR)是从 MySQL 5.7.17 版本(2016年)开始引入的一种新型的集群复制方案。与传统的主从复制方式相比,MGR 更加智能,设计之初就考虑了高可用性和强一致性。
它的核心设计理念有两个:
1. 节点间强一致性复制(CP)
MGR 集群内的所有节点之间使用的是 强同步复制。也就是说,不同节点之间的数据保持一致,是严格基于 一致性优先(CP模型) 进行设计的。事务在提交之前必须通过组认证协议(Group Certification Protocol),确保不会有冲突,且所有成员都能以相同顺序 apply。
2. 支持多主写入(Multi-Primary)
MGR 与传统主从的最大区别是,它支持多个主节点同时写入。也就是说,客户端无论连接哪个节点进行写操作,理论上都是允许的,并且数据最终在全组成员之间保持一致。
这是 MGR 最重要的特性之一,也带来了读写一致性控制的新问题。
二、并发环境下的旧数据读取问题是怎么产生的?
虽然 MGR 保证了最终一致性,但在并发读写操作中仍会遇到问题,尤其是在启用了多主模式(Multi-Primary)时。
让我们从一个实际场景出发:
- 假设我们在 MGR 集群的 M1 节点执行了一个写入操作(事务 T1);
- 然后,在 M3 节点上立即发起另一个读取或写操作(事务 T2);
- 由于 T1 是一个大事务(例如涉及大量数据变更),并且同步存在延迟;
- 那么在 T1 的数据还未同步到 M3 时,T2 可能就执行了;
- 这就会造成 T2 基于“旧数据快照”来进行业务逻辑处理,数据已被修改但未感知。
这就是 MGR 在并发环境下常见的读写不一致问题。
为什么会这样?
因为 MGR 的事务同步是通过以下过程完成的:
- 在 M1 上执行的事务 T1 写入 binlog;
- M2、M3 节点将其接收并写入本地 relay log;
- relay log 数据通过 apply 机制执行;
- 最后由 M1、M2、M3 共同进入 commit 阶段。
问题出在:M3 还没 apply 完 T1,客户端已经在 M3 上发起了新的事务 T2。
由于 apply 是异步过程,T2 获取的数据就是 T1 commit 之前的快照数据。
三、MGR 事务同步的详细过程分析
场景说明
- MGR 启用了多主写入;
- 我们将数据写入主节点 M1;
- M1 会将事务变更记录到 binlog;
- M2、M3 会通过组复制协议接收这个 binlog 日志,写入 relay log;
- 然后依次 apply 这些 relay log 中的事务;
- 最终在每个节点上完成事务 commit。
并发问题重现
在上面的场景中,如果 T1 是一个大事务,M3 在收到 T1 的 relay log 但尚未 apply 时,T2 在 M3 上被发起,并读取数据,这时 M3 上的数据尚未更新。
于是:
- T2 获取了旧数据;
- 在旧数据基础上执行后续逻辑;
- 造成数据不一致。
四、解决方案:使用 group_replication_consistency
参数
为了解决这种并发下读写不一致的问题,从 MySQL 8.0.14 开始,官方新增了一个控制读写一致性的参数:
group_replication_consistency
这个参数允许我们定义 MGR 的一致性控制级别,防止读到旧数据或未同步数据。
五、参数使用方式与三种设置粒度
group_replication_consistency
可以设置为:
-
SESSION
会话级别(推荐开发或调试时使用):SET SESSION group_replication_consistency = 'BEFORE';
-
GLOBAL
全局级别(影响整个实例):SET GLOBAL group_replication_consistency = 'BEFORE';
-
多值组合(例如
'BEFORE,AFTER'
):SET SESSION group_replication_consistency = 'BEFORE_AND_AFTER';
六、四种一致性控制模式详解
1. EVENTUAL
(默认值)
- 行为: 不做任何一致性控制;
- 读取行为: 可能读到旧数据;
- 性能: 最优;
- 适用场景: 日志、监控等对一致性容忍的场景。
2. BEFORE
-
行为: 当前事务会等待本节点上所有已接收但尚未提交的事务先完成;
-
机制细节:
- T2 在 M3 上执行时,会先判断是否有 T1 正在 apply;
- 如果有,T2 会阻塞,直到 T1 commit;
-
优点:
- 只关注当前节点顺序,控制轻量;
- 能有效避免读取旧数据;
-
适用场景: 推荐大部分业务使用;
-
性能: 优于 AFTER,劣于 EVENTUAL。
3. AFTER
-
行为: 当前事务提交后,必须等待其变更在所有节点上同步完成;
-
机制细节:
- T1 提交后,M1 广播事务到 M2、M3;
- M2、M3 应答后才允许最终 commit;
-
优点: 提交之后保证全组一致;
-
缺点:
- 存在广播与应答开销;
- 网络状况直接影响延迟;
-
适用场景: 金融、库存、订单等对一致性极度敏感的核心业务;
-
性能: 明显下降,适合关键路径。
4. BEFORE_AND_AFTER
-
行为: 同时启用 BEFORE 和 AFTER;
-
机制细节:
- T2 会等待本地事务完成(BEFORE);
- 自身 commit 后也会等待全组确认(AFTER);
-
优点: 理论上安全性最高;
-
缺点: 性能最差,极少使用;
-
适用场景: 极端场景、测试验证。
七、具体事务执行控制流程解析
BEFORE 模式下:
- T2 在 M3 上执行;
- 发现 T1 未提交,阻塞等待;
- 等 T1 commit 后,T2 再执行;
- 确保在节点 M3 内部顺序一致。
AFTER 模式下:
- T1 提交时触发全组广播;
- 等待 M2、M3 收到并确认 apply;
- 所有节点 commit 后,T1 才完成;
- T2 无法进入,直到 T1 完整结束。
BEFORE_AND_AFTER 模式:
- T2 既等 T1 结束(BEFORE);
- 自己 commit 时又要广播(AFTER);
- 等待过程最长,性能最低,但一致性最强。
八、性能测试对比数据
下表为四种模式的性能对比,含 TPS、QPS 和 95% 响应时间:
模式 | TPS | QPS | 95% 响应时间 |
---|---|---|---|
EVENTUAL | 最高 | 5951 | 23ms |
BEFORE | 较高 | 5387 | 31ms |
AFTER | 明显下降 | 4123 | 61ms |
BEFORE_AND_AFTER | 最低 | 3567 | 78ms |
从中可以看出,虽然 AFTER 和 BEFORE_AND_AFTER 保证了强一致性,但带来的性能开销巨大,应谨慎使用。
九、总结与最佳实践建议
结论总结如下:
EVENTUAL
:性能好但可能读取旧数据,不建议用于有写入的场景;BEFORE
:兼顾一致性与性能,是默认推荐设置;AFTER
:适用于金融、订单、库存等对一致性非常高要求的系统;BEFORE_AND_AFTER
:主要用于极端测试环境,生产环境下慎用。
推荐配置建议:
场景 | 建议模式 |
---|---|
绝大多数业务系统 | BEFORE |
核心交易逻辑 | AFTER |
写少读多场景 | BEFORE |
日志或统计分析 | EVENTUAL |
高一致性验证系统 | BEFORE_AND_AFTER |
十、结语
MySQL MGR 提供了强大的一致性保障能力,但也需要开发者合理理解其行为模式,并选择最合适的参数设置。
使用 group_replication_consistency
参数,可以有效地避免并发环境下的数据读取偏差问题。但它不是“开了就好”,而是要在系统性能与一致性之间做出平衡。
建议开发者:
- 在上线前进行不同模式的 负载压测;
- 根据业务需求选择合适的模式;
- 对关键路径进行事务隔离保护和防重复逻辑设计;
- 配合中间件层做进一步防并发控制(如幂等、分布式锁等机制)。