用神经网络实现手写数字识别

该博客通过Python和TensorFlow实现了一个全连接双隐藏层的神经网络,用于手写数字识别。首先,从MNIST数据集中加载并预处理数据,然后构建网络模型,包括两个隐藏层,并使用ReLU激活函数。接着,定义损失函数、优化器和准确率指标,通过训练进行模型优化。最后,对模型进行评估,展示预测结果,并可视化部分预测错误的样本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 实验代码

import tensorflow as tf

import tensorflow.examples.tutorials.mnist.input_data as input_data

from time import time

mnist = input_data.read_data_sets("mnist_data/",one_hot = True)

mnist.train.num_examples

mnist = input_data.read_data_sets("mnist_data/",one_hot = True)

x = tf.placeholder(tf.float32,[None,784],name = "X")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_46475176

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值