学习笔记Spark(六)—— Spark SQL应用(1)—— Spark SQL简介、环境配置

SparkSQL是Spark的一个重要组件,提供DataFrame和DataSet编程抽象,支持SQL查询和Hive兼容性。其特性包括与Spark程序的无缝集成、统一数据访问、标准JDBC/ODBC连接和可扩展性。在环境配置中,涉及Hive-site.xml的拷贝、MySQL驱动的添加、Spark配置更新、日志级别调整以及Spark和相关服务的启动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Spark SQL简介

1.1、Spark SQL特性

  • Spark SQL是Spark Core之上的一个组件,它引入了一个称为SchemaRDD的新- 数据抽象,它为结构化和半结构化数据提供支持

  • 提供了DataFrame、DataSet的编程抽象

  • 可以充当分布式SQL查询引擎

  • Spark SQL是spark套件中一个模板,它将数据的计算任务通过SQL的形式转换成了RDD的计算,类似于Hive通过SQL的形式将数据的计算任务转换成了MapReduce。

  • Spark SQL也可以用来从Hive中读取数据,当我们使用其它编程语言来运行一个SQL语句,结果返回的是一个Dataset或者DataFrame.你可以使用命令行,JDBC或者ODBC的方式来与SQL进行交互。


1.2、Spark SQL特性

1、集成
无缝地将SQL查询与Spark程序混合。 Spark SQL允许用户将结构化数据作为Spark中的分布式数据集(RDD)进行查询,这种紧密的集成使得可以轻松地运行SQL查询以及复杂的分析算法。

2、统一数据访问
加载和查询来自各种来源的数据。Schema-RDDs提供了一个有效处理结构化数据的单一接口,加载和查询来自各种来源的数据。

3、标准连接
通过JDBC或ODBC连接。 Spark SQL包括具有行业标准JDBC和ODBC连接的服务器模式。

4、Hive兼容性
在现有仓库上运行未修改的Hive查询。 Spark SQL重用了Hive前端和MetaStore,为您提供与现有Hive数据,查询和UDF的完全兼容性。只需将其与Hive一起安装即可。

5、可扩展性
对于交互式查询和长查询使用相同的引擎。 Spark SQL利用RDD模型来支持中查询容错,使其能够扩展到大型作业。不要担心为历史数据使用不同的引擎。


1.3、Spark SQL架构

在这里插入图片描述


二、环境配置

1、拷贝hive-site.xml/usr/local/spark-2.4.0-bin-hadoop2.6/conf

cp /opt/apache-hive-1.2.1-bin/conf/hive-site.xml /opt/spark-2.4.0-bin-hadoop2.6/conf/
scp /opt/apache-hive-1.2.1-bin/conf/hive-site.xml node1:/opt/spark-2.4.0-bin-hadoop2.6/conf/
scp /opt/apache-hive-1.2.1-bin/conf/hive-site.xml node2:/opt/spark-2.4.0-bin-hadoop2.6/conf/
scp /optapache-hive-1.2.1-bin/conf/hive-site.xml node3:/opt/spark-2.4.0-bin-hadoop2.6/conf/

2、拷贝MYSQL驱动到/opt/spark-2.4.0-bin-hadoop2.6/jars

cp /opt/apache-hive-1.2.1-bin/lib/mysql-connector-java-5.1.32-bin.jar /opt/spark-2.4.0-bin-hadoop2.6/jars/
scp /opt/spark-2.4.0-bin-hadoop2.6/jars/mysql-connector-java-5.1.32-bin.jar node1:/opt/spark-2.4.0-bin-hadoop2.6/jars/
scp /opt/spark-2.4.0-bin-hadoop2.6/jars/mysql-connector-java-5.1.32-bin.jar node2:/opt/spark-2.4.0-bin-hadoop2.6/jars/
scp /opt/spark-2.4.0-bin-hadoop2.6/jars/mysql-connector-java-5.1.32-bin.jar node3:/opt/spark-2.4.0-bin-hadoop2.6/jars/

3、在所有节点/opt/spark-2.4.0-bin-hadoop2.6/conf/spark-env.sh 文件中配置 MySQL 驱动

SPARK_CLASSPATH=/opt/spark-2.4.0-bin-hadoop2.6/jars/mysql-connector-java-5.1.32-bin.jar

4、启动 MySQL 服务
(若已启动,忽略)

service mysqld start

5、启动 Hive 的 metastore 服务
(若已启动,忽略)

hive --service metastore &

6、修改日志级别,在各节点:

cp /opt/spark-2.4.0-bin-hadoop2.6/conf/log4j.properties.template /opt/spark-2.4.0-bin-hadoop2.6/conf/log4j.properties

修改log4j.properties

log4j.rootCategory=WARN, console

7、启动spark集群
(若已启动,忽略)
8、访问spark-sql

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值