MMrotate训练自己的数据集

本文介绍了如何在PyTorch中进行模型训练,包括设置检查点策略、修改预测结果颜色、评估指标(如mAP和loss)、模型测试、参数计算、GFLOPs评估以及推理速度测量等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、每个训练批次都保存一次模型(便于选择最佳模型)

在configs/_base_/default_runtime.py中,将default_hooks中的checkpoint设置如下:

checkpoint=dict(type='CheckpointHook', interval=1),

若源码设置了max_keep_ckpts参数(最多保存模型的数量),则将其删除。

二、在image_demo.py中检测测试集图像时,修改预测的旋转框颜色

在mmrotate/visualization/local_visulaizer.py中的RotLocalVisualizer类(继承自MMDet中DetLocalVisualizer类)的中修改颜色。

三、训练结束后,对模型进行测试评估

3.1 绘制loss、mAP曲线(命令行中,loss和mAP互相替换即可)

python tools/analysis_tools/analyze_logs.py plot_curve work_dirs/rotated_rtmdet_tiny-3x-dota/20240216_215435/vis_data/20240216_215435.json --keys mAP --title mAP --out mAP.jpg

3.2 模型测试

python tools/test.py --config configs/rotated_rtmdet/rotated_rtmdet_tiny-3x-dota.py --checkpoint work_dirs/rotated_rtmdet_tiny-3x-dota/epoch_21_best.pth --out work_dirs/rotated_rtmdet_tiny-3x-dota/output.pkl

3.3 测试图像推理(修改过的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值