- 博客(54)
- 资源 (1)
- 收藏
- 关注
原创 intelrealsense深度相机产品介绍
视频截图记录注意:针对深度相机d453i: 深度FOV 87°x58°, 而RGB FOV 69°x42°, 因此当深度图对齐于彩色图时,并不会完全对齐,深度图范围更大,彩色图范围更小。对于D455,由于彩色图的FOV大于深度图的FOV,因此 彩色图 画面可以 包括 深度图画面。
2025-06-06 21:41:24
227
原创 open3d:使用彩色图和深度图生成点云
原因1:深度图主要有红外镜头1,2拍摄图像,通过图像匹配生成,因为 三个镜头是分开的,存在三个不同视角,导致彩色画面中像素在深度图中不存在,因此为无效深度值(这里深度图对齐与彩色图);上图为经过空间滤波,空洞填充的优化深度图,但是其深度信息, 对于立体物体,尤其是微小的立体物体 存在失真, 本来是有高度层次变化的实例物体点云,优化后, 变为平面点云。: 步长参数,设置为大于1的值可以降低点云的分辨率。近距离看,远程点云有些失真,(可能是光照原因)褐色是玻璃(平面),显示的点云为凹形。深度值先缩放再截断。
2025-06-05 20:21:19
872
原创 深度相机d435i 流格式
**`bgra8`**: **8位BGRA格式**。不同的格式决定了如何解析帧缓冲区中的二进制数据。* **`rgba8`**: **8位RGBA格式**。* **`raw10`**: **10位原始(Bayer)格式**。* **`inzi`**: **红外(IR) + 深度(Z)交错格式**。* **`xyz32f`**: **32位浮点3D坐标**。* **`bgr8`**: **8位BGR格式**。* **`raw16`**: **16位原始(Bayer)格式**。
2025-06-04 15:57:08
523
原创 up霹雳-MASK-RCNN学习使用-VOC格式实例分割数据集
之前2025.4.10跑b站up的霹雳吧啦Wz的MASK-RCNN代码, 但是没有写博客记录怎么调整的,现在忘光了,惨痛教训。故这次重新跑,并记录使用流程。相关原理视频课可看 该up的视频本文章大概内容包括:1.如何将自已的实例分割数据集转换为VOC,COCO的 格式 进行训练2.在跑代码时,需要对代码哪些部分进行改动,以保证训练成功。
2025-05-23 09:12:08
713
原创 平滑点云:双边滤波、MLS
双边滤波和MLS(Moving Least Squares,移动最小二乘)都是常用的点云平滑技术,以下是它们的异同、优缺点:### 相同点- **非线性滤波**:二者都属于非线性滤波方法,能够在一定程度上保留点云的边缘和细节信息,避免像传统线性滤波方法那样容易产生过度平滑导致特征模糊的问题。- **基于邻域的处理**:都是基于点云数据的局部邻域信息进行滤波处理,通过考虑邻域内点的相关性来确定当前点的平滑结果。### 不同点- **原理基础**
2025-05-14 12:00:13
714
原创 np.arctan与 np.arctan2
np.arctan:计算单个值的反正切,返回值是弧度。:一个标量或数组,表示 tan(θ) 的值。:返回对应的角度 θ,范围在弧度(即np.arctan2:计算两个值(y 和 x)的反正切,考虑了象限信息,返回值是弧度。:两个标量或数组,分别表示 y 和 x 坐标。:返回对应的角度 θ,范围在弧度(即。
2025-04-27 10:59:06
298
原创 物体姿态表示
学习1.如何表示一个物体在三维空间中的姿态,2.如何表示同一个物体在不同坐标系下的姿态3.如何表示两个物体之间的相对姿态(姿态转换R,T)
2025-04-18 10:53:20
171
原创 使用labelme进行实例分割标注
最近在学习实例分割算法,参考b站视频课教程,使用labelme标注数据集,在csdn找到相关教程进行数据集格式转换,按照相关目标检测网络对数据集格式的训练要求划分数据集。
2025-04-12 12:08:56
1194
原创 晶振11.0592MHZ,波特率4800bps计算
在使用11.0592MHz晶振的8051单片机中,通过配置SMOD位(0或1)和定时器1的初值(TH1),可以精确生成4800波特率。8051串口通信的波特率由以下公式决定:其中:foscfosc:晶振频率(11.0592 MHz):电源控制寄存器(PCON)的位7(0或1):定时器1的重载值(0~255)配置寄存器:TH1 = 250(十六进制 0xFA)定时器1模式设为自动重载(模式2)设置SMOD=0(默认值)
2025-04-02 21:55:15
1159
原创 串口通信:全双工,半双工;异步,同步
来自江科大名称引脚定义通信方式特点UARTTXD,RXD全双工、异步点对点通信I2CSCL,SDA半双工,同步可挂载多个设备SPI全双工,同步可挂载多个设备1-WireDQ半双工,异步可挂载多个设备全双工:通信双方可以在同一时刻互相传输数据半双工:通信双方可以互相传输数据,但必须分时复用一根数据线单工:通信只能有一方发送到另一方,不能反向传输异步:通信双方各自约定通信速率同步:通信双方靠一根时钟线来约定通信速率。
2025-04-02 09:56:12
464
原创 open3d点云下采样及显示
随机颜色这里,open3d给点云赋值颜色的RGB三个量范围为[0,1]。如下,如果返回[0,255],则需要除以255.0,转换为小数。
2025-03-26 14:40:38
206
原创 open3d:draw_geometries
是否显示网格的线框,默认为。: 是否显示网格的背面,默认为。: 需要可视化的几何对象列表。: 可视化窗口的标题,默认为。: 窗口的左边界位置,默认为。: 窗口的上边界位置,默认为。: 是否显示点的法线,默认为。: 窗口的宽度,默认为。: 窗口的高度,默认为。: 相机的观察向量。: 相机的向上向量。: 相机的向前向量。: 相机的缩放级别。
2025-03-20 16:21:33
164
原创 介绍open3d各种点云下采样的方法及区别, 以及使用场景
计算速度快,适合有序点云(如激光雷达按行/列排列的数据)。:对无序点云效果差,可能导致采样不均匀或丢失局部细节。:保持空间分布均匀,适合无序点云,能有效保留几何特征。迭代选择距离已选点最远的点,确保采样点覆盖整个空间。:计算复杂度高(O(N^2)),不适用于实时任务。,每个体素内保留一个点(通常取中心点或随机点)。点云深度学习(如 PointNet、点云分割)。直接根据点的顺序进行采样,不依赖空间分布。控制网格大小,体素越大,降采样越激进。有序点云(如深度相机、激光雷达数据)。
2025-03-18 11:37:32
1039
原创 clutch, clench, clasp, clap, clamp 之间区别
急切地紧紧抓住某物,通常带有紧张、焦虑或紧急的意味。:多为具体物体(如包、方向盘),强调瞬间的抓握。:可表示“离合器”(汽车部件)或“女士手包”。She(在拥挤的地铁里,她紧紧抓着钱包。The driver(司机惊慌中死死抓住方向盘。:用力收紧身体部位(如牙齿、拳头),多因情绪(愤怒、紧张、决心)驱动。:通常与身体部位搭配,强调肌肉的紧绷状态。He(他握紧拳头控制怒火。(病人在痛苦的治疗过程中咬紧牙关。:用扣子、钩子或双手固定某物,强调“扣紧”或“环抱”。
2025-03-16 09:58:58
1728
原创 颤抖:quiver,shiver,tremble的区别
轻微、快速的颤动(通常因情绪或细微外力引起)。:紧张、兴奋、期待(如声音、嘴唇颤抖)。:树叶、光线、琴弦等的轻微振动。Her voice(她讲述事故时声音颤抖。The leaves(树叶在微风中轻轻颤动。:因寒冷、恐惧或不适引起的身体颤抖(常伴随寒意)。:打冷颤。:因害怕或不安而发抖。He(他在寒风中冷得发抖。(鬼故事吓得她直哆嗦。:幅度较大、持续时间较长的颤抖(因强烈情绪、虚弱或外力)。:恐惧、愤怒、激动。:虚弱、疾病、衰老。:地面、建筑物等因震动而摇晃。Her hands(她拆信时双手颤抖。
2025-03-12 14:59:54
679
原创 点云滤波方法:特点、作用及使用场景
**特点**:在点云的指定维度(如x、y、z)上设置阈值范围,过滤掉该维度上不在阈值范围内的点,能够快速去除离群点,达到粗处理的目的。- **作用**:用于去除点云数据中在某一维度上明显偏离正常范围的离群点,或提取感兴趣区域内的点云数据。- **使用场景**:当点云数据在某一方向上分布较广,但其他方向分布有限时,可通过直通滤波器确定点云在该方向上的范围,剪除离群点。
2025-03-05 15:59:43
1320
原创 cv.drawContours(mask,[obj_rect_cnt], 0, 255, -1) 与cv.fillPoly(mask, polygons, color=255) 区别
obj_rect_cnt]是一个坐标点(x,y)列表,ploygons也是一个坐标点列表。
2025-02-27 16:22:49
394
原创 labelme2yolov8-seg 草稿()
最近做实例分割分割,使用Labelme生成json格式标签后,需要转换为txt标签,才能供YOLO进行训练。在参看b站,github后,发现GitHub有相关项目:lableme2yolo一个是ultralyics官方的JSON2YOLO项目。
2024-12-31 17:10:58
400
原创 np.where与np.argwhere相关使用
np.where是一个非常灵活的函数,可以根据条件返回符合条件的元素的索引,或者根据条件在两个数组中选择元素。当只有一个参数时,np.where返回满足条件的索引。(对原数组的元素进行“二值化”,即Ture or False)当有两个额外参数时,np.where返回一个新的数组,根据条件从两个选项中选择元素。返回满足条件的元素的索引,结果是一个二维数组,每行表示一个索引。它比np.where更直接返回索引,而不需要额外处理。
2024-12-27 10:43:16
968
原创 cv.calibrateCamera 和 cv.getOptimalNewCameraMatrix
cv.calibrateCamera` 和 `cv.getOptimalNewCameraMatrix` 是 OpenCV 库中用于相机标定和畸变校正的两个重要函数。下面分别解释这两个函数的用途和参数。
2024-12-23 17:22:34
412
原创 问题1求助:AttributeError: ‘NoneType‘ object has no attribute ‘_free_weak_ref‘
【代码】问题1求助:AttributeError: ‘NoneType‘ object has no attribute ‘_free_weak_ref‘
2024-11-03 15:43:55
486
6
原创 Precision,Recall、AP50、mAP50和F1指标
在机器学习和计算机视觉领域,特别是在评估分类和目标检测模型性能时,Precision(精确率)、Recall(召回率)、AP50、mAP50和F1指标是几个非常重要的评价指标。: 精确率是指在所有被模型预测为正类的样本中,实际为正类的比例。它反映了模型预测的准确性。: 召回率是指在所有实际为正类的样本中,被模型正确预测为正类的比例。它反映了模型捕获所有正类样本的能力。: AP50是一种平均精确率的度量,它在召回率为50%时计算。这是在目标检测任务中常用的指标,特别是在速度和精度之间需要平衡的场景下。
2024-10-25 12:06:09
1509
原创 3D旋转的表示
四元数1.Quaternion:用于4D浮点数向量Point4DF32表示一个3D旋转(w,x,y,z)。旋转矩阵2.Rotation Matrix:3X3浮点数旋转矩阵。欧拉角3.Euler Angles:用3D浮点数向量表示绕每一个轴的旋转角度(偏航:yaw,Z;翻滚:roll,X;俯仰:pitch,Y)角-轴4.Angle + Axis:绕某轴的旋转角度(弧度)。
2024-08-24 15:38:26
248
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人