- 博客(78)
- 资源 (1)
- 收藏
- 关注
原创 点云的协方差矩阵的三个特征值代表什么?
点云协方差矩阵的三个特征值(λ₁≥λ₂≥λ₃)及其特征向量揭示了局部几何结构特征:λ₁表示最分散方向(切平面或线性结构),λ₂为次分散方向,λ₃对应最小分散方向(通常为法向量)。特征值相对大小可区分平面(λ₁≈λ₂≫λ₃)、线状(λ₁≫λ₂≈λ₃)或角点(λ₁≈λ₂≈λ₃)等结构。核心应用包括法向量估计(v₃)、曲率计算(λ₃/Σλ)、特征点提取和点云分割分类,是分析点云局部几何特性的基础工具。
2025-07-27 15:08:25
863
原创 语义分割-FCN-听课记录
翻译:卷积网络是一种强大的视觉模型,能够产生层次化的特征。我们证明了**仅使用卷积网络本身,采用端到端、像素到像素的训练方式**,即可在语义分割任务中**超越现有最佳结果**。我们的核心洞见在于构建“**全卷积网络**”(Fully Convolutional Networks),这种网络**可以接收任意尺寸的输入,并生成对应尺寸的输出**,同时具备高效的推理和学习能力。我们定义并详细阐述了全卷积网络的设计空间,解释了其在**空间密集型预测任务**中的应用,并**与先前模型建立了联系**。
2025-07-25 20:55:27
805
原创 b-up:Enzo_mi:Transformer & DETR系列
注意:q-查询;k-商品标签;v-值(具体商品)* 不是指乘法,类似概念a1:相似度;b1:总分若想了解 I 这个词 与其他词的相似度,则用q1分别乘以 k2,k3,k4若想了解 dog 这个词 与其他词的相似度,则用q4分别乘以 k1,k2,k3注意:(1,4,2) 1 表示一个batch size, 4表示一个token, 2表示每个token的长度。
2025-07-24 22:01:31
581
原创 b-up:Enzo_Mi:深度学习基础知识
上图中最后一行,第一个图像,因为目标像素(放大后,位于第1行第0列的像素)距离它最近的原图的像素的像素值为1,因此该目标像素取值为1。把原图分别进行 上采样方式1:最近邻插值方式2:双线性插值肉眼观看,方式2效果更好,没有锯齿状,更平滑虽然在上采样阶段, 使用双线性插值可以得到比最近邻差值效果更好的 图片,但是对于语义分割任务并不合适。
2025-07-18 21:53:29
725
原创 听课记录:b-up-Enzo_Mi:转置卷积、膨胀卷积、可变形卷积
将18个通道 每个特征图中 与卷积核位置 相对应的 元素的 坐标位置取出, 排列为 三角形,三角形R里每个元素即为三角形Pn, 表示 卷积核中每个元素的偏移量。将 输入(小尺寸) 和 输出(大尺寸) 颠倒,当初普通卷积, 已知 卷积核大小k*k, 求该普通卷积的s,p 然后将s,p 作为 转置卷积的 参数。p0表示中心点坐标(卷积核中心点对图像的坐标),pn围绕中心点的一圈像素点的坐标偏差。如果 卷积核没有间隔,即普通卷积,则膨胀率 dilation rate=1;
2025-07-16 17:21:34
265
原创 改进策略记录-学习
1]张士豪,沈磊,宋利杰,等.基于RGB-D图像的葡萄复芽识别定位方法[J].农业工程学报,2023,39(21):172-180.与深度参数的权重(个人:不考虑)等方法,优化并确定最适合本研究的检测模型。通过图可以看出: 轻量化骨干网络, 小目标检测。该文献检查葡萄的芽(小目标-极小)1.通过更换轻量级骨干网络、
2025-07-15 16:20:25
103
原创 膨胀卷积介绍
膨胀卷积通过智能引入采样间隙指数级扩大感受野:单层达到传统网络多层的视野零参数量增加:保持模型轻量分辨率保持:避免池化导致的信息丢失多尺度上下文捕获:通过不同膨胀率组合这些特性使其成为现代卷积神经网络中处理大范围空间依赖和长距离时序关系的首选工具,尤其在需要精细空间定位的任务中不可替代。
2025-07-10 20:08:23
501
原创 多尺度感知增强,在最后一层主干网络中用多核池化(MKP)替代传统下采样,同时压缩检测头数量,实现结构简化和多尺度增强--参考-改进方法
多尺度感知增强是一种有效的方法,通过在最后一层主干网络中用多核池化(MKP)替代传统下采样,同时压缩检测头数量,实现结构简化和多尺度增强,从而提升目标检测的精度和效率:### 多尺度感知增强的概念- 多尺度感知增强旨在使模型能够同时感知和处理不同尺度的目标,从而提升检测精度。- 传统的目标检测模型在处理不同尺度目标时存在困难,例如大目标的特征可能会掩盖小目标的特征,影响检测效果。
2025-07-06 19:48:13
217
原创 深度可分离卷积介绍
深度可分离卷积(Depthwise Separable Convolution)是一种高效的卷积操作,它通过将标准卷积分解为两个独立的步骤——深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)——来减少参数量和计算量。
2025-07-06 19:45:41
378
原创 一些改进策略
## 计算总参数量和可训练参数量:1. **逐层计算参数量**:- 对于每一层,确定该层的参数量。这通常取决于层的类型和输入输出的维度。- 例如,对于一个卷积层,参数量可以通过公式:参数量 = (输入通道数 × 卷积核高度 × 卷积核宽度 + 1(偏置项)) × 输出通道数 计算得到。- 对于一个全连接层(线性层),参数量可以通过公式:参数量 = 输入维度 × 输出维度 + 输出维度(偏置项)计算得到。
2025-07-06 19:34:53
730
原创 为什么 yolo优化时 需要优化 参数量和计算量
**计算效率**:参数量的减少通常意味着计算量的减少。- **能耗**:计算量的减少可以降低模型的能耗,这对于移动设备或需要长时间运行的应用非常关键。- **原理**:通过移除模型中不重要的权重(例如,权重值接近于零的参数),减少模型的参数量。- **参数量**:模型的参数量(即权重和偏置的数量)直接影响模型的复杂度和存储需求。- **效果**:学生模型可以继承教师模型的大部分性能,同时具有更少的参数和计算量。- **效果**:可以显著减少模型的大小和计算量,同时尽量保持模型的性能。
2025-07-06 17:28:57
457
原创 13-2: DS18B20温度读取&温度报警器
整体思路one-wire模块(五个函数)初始化发送一位,接收一位发送一个字节,接收一个字节DS18B20模块(两个函数)开始温度变化读取温度变化。
2025-07-05 08:47:38
181
原创 yolov11.yaml以及yolov11-seg.ymal文件解析
2. **C3**:CSP瓶颈模块的一个基础版本,包含三个卷积层和一系列瓶颈层,能够高效提取不同层次的特征。综上所述,CSP瓶颈模块通过将输入特征图分割成两部分并分别处理,再进行特征融合的方式,有效地减少了网络的计算复杂性和内存需求,同时提高了性能。3. **C3k**:C3模块的一个变体,主要改进在于它允许自定义卷积核的大小。3. **复杂卷积路径**:对另一部分特征图进行一系列的卷积和连接操作,提取更复杂的特征。4. **特征融合**:将直接卷积路径和复杂卷积路径的输出进行融合,以生成最终的特征图。
2025-07-04 15:30:29
1078
原创 yolov8-yaml文件解析
实时实例分割45 FPS (V100) 实现 40% mask AP (COCO)比 Mask R-CNN 快 5 倍,精度相当端到端优化联合优化检测和分割任务共享特征提取,减少重复计算硬件友好设计原型计算与实例数量解耦矩阵运算高度并行化最小化内存访问开销多尺度适应性小目标:高分辨率系数预测大目标:深层次语义特征不规则目标:动态原型组合 (不理解其原理???
2025-07-03 11:03:40
999
原创 决定系数R2,均方根误差RMSE
好的,我们来详细解释一下 R²(R-squared)和 RMSE(Root Mean Squared Error)这两个在统计学和机器学习(尤其是回归分析)中至关重要的评估指标。它们都用于衡量回归模型的性能,但角度和意义有所不同。**核心目标:** 评估模型预测值与真实值之间的差异。**1. R² (R-squared) - 决定系数*** **定义:** R² 衡量模型**解释**因变量(目标变量)**变异(波动)**的能力。它表示模型捕捉到的数据方差占总方差的比例。
2025-07-01 10:46:00
606
原创 13-1:DS18B20温度传感器
21:44硬件内部结构听了还是晕最右边5个寄存器1.温度传感器2.报警高触发寄存器3.报警低触发寄存器4.配置寄存器(设置传感器的分辨率(精度),出厂默认配置为0.0625)5.CRC校验码(类似身份证的校验码,用于效验数据是否正确)0:23:14暂存器 有9个字节其中前两个字节(Byte0,Byte1 :存储温度)0:37:01 两种供电模式第一种:正常供电(需要三个线:电源VDD,接地GND,数据DQ) (本节课以第一种为例子)第二种:寄生供电 ,仅需要两跟线,注意:在进行读,写等耗电操作,需要强
2025-06-30 11:35:10
882
原创 12—2:AT24C02数据存储&秒表(定时器扫描按键数码管)
/包含之前项目:按键,数码管,时钟,定时器//初始化定时器while(1)if(KeyNum==1) //启动,暂停 键RunFlag=!RunFlag;if(KeyNum==2) //归零Min=0;Sec=0;MiniSec=0;if(KeyNum==3) //写入Delay(5);//写入周期Delay(5);Delay(5);if(KeyNum==4) //读取//第一个数码管显示分钟的十位//横杠。
2025-06-30 09:17:17
921
原创 12-1 AT24C02(I2C总线)
58:46主机在接收之前,需要释放SDA将SDA置1,相当于释放,释放的时候,主机完全不干预通信线,从机控制数据线59:15紫色线条表示从机控制数据集黑色线条表示主机控制,当黑色线条:从0至1,表示主机释放数据线,由从机进行控制数据线59:50。
2025-06-28 15:48:37
665
原创 11-2蜂鸣器播放音乐
效果:类似恐怖片,随时间推移,心跳紧张2.小星星曲谱演奏缺点:每个音符的延迟时间无法灵活定义 小星星曲谱 个人:这个记录方法挺不错,可以保存up每次改进的思路点,不然全程都跟着敲,不知道其中是如何一步步改进的,那一段时间后就容易忘了。效果:当音乐响到休止符时,停止声音一段时间5.添加终止符,当音月从头到尾播放完成,遇到终止符0xFF,则结束播放音乐 6.播放天空之城注意:1.由于乐谱 占内存很大, 因此 存放于Flash 中(8k), 加一个 co
2025-06-27 17:06:12
305
原创 intelrealsense深度相机产品介绍
视频截图记录注意:针对深度相机d453i: 深度FOV 87°x58°, 而RGB FOV 69°x42°, 因此当深度图对齐于彩色图时,并不会完全对齐,深度图范围更大,彩色图范围更小。对于D455,由于彩色图的FOV大于深度图的FOV,因此 彩色图 画面可以 包括 深度图画面。
2025-06-06 21:41:24
283
原创 open3d:使用彩色图和深度图生成点云
原因1:深度图主要有红外镜头1,2拍摄图像,通过图像匹配生成,因为 三个镜头是分开的,存在三个不同视角,导致彩色画面中像素在深度图中不存在,因此为无效深度值(这里深度图对齐与彩色图);上图为经过空间滤波,空洞填充的优化深度图,但是其深度信息, 对于立体物体,尤其是微小的立体物体 存在失真, 本来是有高度层次变化的实例物体点云,优化后, 变为平面点云。: 步长参数,设置为大于1的值可以降低点云的分辨率。近距离看,远程点云有些失真,(可能是光照原因)褐色是玻璃(平面),显示的点云为凹形。深度值先缩放再截断。
2025-06-05 20:21:19
938
原创 深度相机d435i 流格式
**`bgra8`**: **8位BGRA格式**。不同的格式决定了如何解析帧缓冲区中的二进制数据。* **`rgba8`**: **8位RGBA格式**。* **`raw10`**: **10位原始(Bayer)格式**。* **`inzi`**: **红外(IR) + 深度(Z)交错格式**。* **`xyz32f`**: **32位浮点3D坐标**。* **`bgr8`**: **8位BGR格式**。* **`raw16`**: **16位原始(Bayer)格式**。
2025-06-04 15:57:08
565
原创 up霹雳-MASK-RCNN学习使用-VOC格式实例分割数据集
之前2025.4.10跑b站up的霹雳吧啦Wz的MASK-RCNN代码, 但是没有写博客记录怎么调整的,现在忘光了,惨痛教训。故这次重新跑,并记录使用流程。相关原理视频课可看 该up的视频本文章大概内容包括:1.如何将自已的实例分割数据集转换为VOC,COCO的 格式 进行训练2.在跑代码时,需要对代码哪些部分进行改动,以保证训练成功。
2025-05-23 09:12:08
742
原创 平滑点云:双边滤波、MLS
双边滤波和MLS(Moving Least Squares,移动最小二乘)都是常用的点云平滑技术,以下是它们的异同、优缺点:### 相同点- **非线性滤波**:二者都属于非线性滤波方法,能够在一定程度上保留点云的边缘和细节信息,避免像传统线性滤波方法那样容易产生过度平滑导致特征模糊的问题。- **基于邻域的处理**:都是基于点云数据的局部邻域信息进行滤波处理,通过考虑邻域内点的相关性来确定当前点的平滑结果。### 不同点- **原理基础**
2025-05-14 12:00:13
788
原创 np.arctan与 np.arctan2
np.arctan:计算单个值的反正切,返回值是弧度。:一个标量或数组,表示 tan(θ) 的值。:返回对应的角度 θ,范围在弧度(即np.arctan2:计算两个值(y 和 x)的反正切,考虑了象限信息,返回值是弧度。:两个标量或数组,分别表示 y 和 x 坐标。:返回对应的角度 θ,范围在弧度(即。
2025-04-27 10:59:06
405
原创 物体姿态表示
学习1.如何表示一个物体在三维空间中的姿态,2.如何表示同一个物体在不同坐标系下的姿态3.如何表示两个物体之间的相对姿态(姿态转换R,T)
2025-04-18 10:53:20
194
原创 使用labelme进行实例分割标注
最近在学习实例分割算法,参考b站视频课教程,使用labelme标注数据集,在csdn找到相关教程进行数据集格式转换,按照相关目标检测网络对数据集格式的训练要求划分数据集。
2025-04-12 12:08:56
1620
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人