前言
笔记
- 这篇论文很像之前的GPNN,也是将HOI描述成图,利用图的结构来构建网络。但是这篇文章指出,前边的GPNN及其他类似的网络,都将human和object当作一样的节点,但是这篇文章认为,他们应该属于两个不同种类的节点,这样进行分类更好。
- 如图1所示,在本文的做法当中,会将一张图片中的自行车和人标记为不同的节点,例如人都是红色框标注,物体都是蓝色框标注,同一类的节点在文中称之为homogeneous nodes它们之间称为intra-class,而不同类的节点称为heterogeneous nodes,他们之间称为inter-class。
- 特征提取网络如图,Spitial map和之前提到的没什么区别,仍然是两个通道,bbox里边的值为1,其它为0。human block和object block是在使用预训练目标检测器提取特征的基础上进一步提取特征。
- 图三是整个的推理过程,学习策略分是迭代的传递信息并更新节点的隐藏层特征。首先第一步是信息传递,因为节点类型不同,所以这里的信息分为intra-class和inter-class,计算公式如公式