YTU——问题 : 这样查找效率高

本文介绍了一个在有序序列中查找关键字key的方法,通过实现二分查找算法来提高查找效率。程序首先获取序列长度n和有序整数序列,然后搜索关键字key并返回其在序列中的位置,如果key不在序列中,则输出0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

在 n 个整数构成的有序序列中,找到关键字 key 在序列中出现的位置。当 key在序列中不出现时,输出 No
为了提高查找效率,利用待查找序列有序的特征,程序使用“二分查找”的算法。二分查找的做法是:首先,将表中间位置记录的关键字与查找关键字 key 比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
在提示部分已经给出部分代码,将程序补充完整,并提交规定的部分。

输入

先输入 n 个表示待查找的序列中的元素个数。
再输入 n 个整数作为待查找序列,这些整数按从小到大的顺序排列。
最后输入要查找的数 key。

输出

输出 key 在序列出现的位置,若不出现,输出 No

输入输出样例

样例输入 #1

10
2 4 5 6 8 22 37 65 75 88
5

样例输出 #1

3

提示

#include <stdio.h>
#define SIZE 100

int find(int *, int, int);

int main()
{
    int d[SIZE], i;
    int n, key, index;
    scanf("%d", &n);
    for (i= 0; i < n; i++)
       scanf("%d", &d[i]);
    scanf("%d", &key);
    index=find(d,n,key);
    if (index >= 0)
        printf("%d\n", index+1);
    else
        printf
### 折半查找算法关键字实现与解决方案 折半查找算法是一种高效的查找技术,通常应用于有序数组中。以下是该算法关键字实现及其解决方案。 #### 关键词解释 - **折半查找**:也称为二分查找法,通过不断缩小搜索范围来提高效率[^4]。 - **关键字**:指代目标值,在给定的有序序列中寻找匹配项。 - **实现方式**:可以通过迭代或递归两种主要形式完成。 #### 迭代实现 迭代方法利用循环逐步缩小搜索区间,直到找到目标或者确认不存在为止: ```python def binary_search_iterative(arr, target): low = 0 high = len(arr) - 1 while low <= high: mid = (low + high) // 2 if arr[mid] == target: return mid # 返回索引位置 elif arr[mid] < target: low = mid + 1 else: high = mid - 1 return -1 # 如果未找到返回-1 ``` 此代码片段展示了如何使用迭代方式进行折半查找。 #### 递归实现 递归版本则依赖函数调用来分割问题规模,直至达到基础条件停止: ```python def binary_search_recursive(arr, target, low, high): if low > high: return -1 # 基础情况:找不到目标 mid = (low + high) // 2 if arr[mid] == target: return mid # 找到目标 elif arr[mid] < target: return binary_search_recursive(arr, target, mid + 1, high) else: return binary_search_recursive(arr, target, low, mid - 1) # 调用示例 result = binary_search_recursive([1, 3, 5, 7, 9], 5, 0, 4) print(result) # 输出索引位置 ``` 上述代码体现了基于递归逻辑构建的折半查找过程[^2]。 #### 时间复杂度和空间复杂度 - **时间复杂度**:O(log n),因为每次都将搜索区域减少一半[^1]。 - **空间复杂度**:对于迭代版为 O(1),而对于递归版由于栈帧的存在可能上升至 O(log n)[^3]。 #### 应用场景 适合于静态数据集上的快速定位操作,尤其当数据量较大且访问频率较高时表现优异。然而它并不支持动态更新的数据结构,因为在插入或删除元素后需重新排序才能维持有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值